6Линейная алгебра и аналитическая геометрия (1273135)
Текст из файла
Линейная алгебра и аналитическая геометрияКраткий конспект лекций.Лекция 6. МАТРИЦЫМатрицы. Основные понятия. Виды матриц. Равенство матрицВспомним определения и обозначения из предыдущей лекции.Прямоугольная таблица m·n чисел, расположенных в m строках и n столбцах называетсяпрямоугольной (m,n) матрицей или просто матрицей.Будем обозначать матрицы заглавными буквами — A, элементы матриц — ij , столбцы, а строки — , транспонированная матрица — .матрицы —Некоторые часто встречающиеся виды матриц имеют собственные названия:11 ...1n...
... ... ,m=n, матрица, у которой одинаковое числоквадратная матрица, A= ijm,nn1 ...nnстрок и столбцов;матрица-строка,A= 1j11 ...1n ,m=1, матрица, у которой одна строка;j=1,11матрица-столбец, A=i1 i=1,... ,n=1, матрица, у которой один столбец;m1ii ,i=j,0,11диагональная матрица,A=ii i=1,0...0j,022...0............00,a... ijквадратная матрица, уnnкоторой все внедиагональные элементы раны нулю;1 0 ... 00 1 ... 0единичная матрица, E=,диагональная матрица, у которой все диагональные... ... ... ...0 0 ...
1элементы — единицы нулю;0 0 ... 00 0 ... 00,i=1, ,j=1, , матрица, все элементы которой —нулевая матрица, Θ=,a... ... ... ... ij0 0 ... 0нули;1112 ...1n0...222nверхняя треугольная матрица, A= ij...... ... ... ,m=n,aij 0приi>j, квадратнаяm,n00 ...nnматрица, у которой все элементы, расположенные ниже диагонали — нули;0 ... 01102122 ...,m=n,aij 0приi<j, квадратнаянижняя треугольная матрица, A= ijm,n...... ... ...n1n2 ...nnматрица, у которой все элементы, расположенные выше диагонали — нули.В дальнейшем важную роль будет играть ступенчатая матрица:1100...00...12220...00......1r...232r...333r...
... ...0 ...rr0 ... 0... ... ...000...0...013.....................1n2n3n...rn0...,righA=т.е. существует такое число r, 1min m,n , что ij 0для всех i>j, и ij 0для всехпри i>r. Важно понимать, то у ступенчатой матрицы первые r диагональных элементов.отличны от нуля: ii 0,Пример. Ступенчатые матрицы:1001000002 3 1 2 3 1 02 9,02 9,020 2 0 0 0 0 02 3 4 1 2 3 43 3 9 0 3 3 9 10 5 0 0 0 5 0 0,,0 0 9 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 00 1 0 00 , 0 1 0,2 0 0 12300392043075 17 0,0 04 02300390043005 17 0,0 00 001003900430057.00Определение. Две матрицы называются равными, если они имеют одинаковую размерностьи равные соответственные элементы:A= ij m,n ,B= ij k,l ,A=B ⇔ m=k,n=l,aij =bij ,i=1, ,j=1, .Линейные операции с матрицами. Линейными операциями называютсяоперации сложения и умножения на число.Определение.
Суммой двух матриц одинаковой размерности называется матрица той жеразмерности, каждый элемент которой равен сумме соответствующих элементовслагаемых: A= ij m,n ,B= ij m,n ,C=A+B= ij +bij m,n .Определение. Произведением матрицы на число называется матрица той же размерности,каждый элемент которой равен произведению соответствующего элемента на число:A= ij,B=αA= εaij.m,nm,nДля операций сложения и умножения матрицы на число справедливо:A+B = B+A,A+(B+C) = (A+B)+C,α(A+B) = αA+αB,α(βA) = (αβ)A,(α+β)A=αA+βA,6.
1·A=A,7. 0·A= .Здесь A, B, C — произвольные матрицы одинаковой размерности, — нулевая матрица тойже размерности (читается «тэта»), и — произвольные числа.1.2.3.4.5.Умножение матрицОперация умножения матрицы на матрицу определяется более сложным образом.Определение. Пусть заданы две матрицы A и B, причем число столбцов первой из них равночислу строк второй. Если...1n1112 ...1k...21222n2122 ...2kA= ...,... ...
... ,B= ...... ... ...m1m2 ...mnn1n2 ...nkто произведением матриц A и B называется матрица...111k...212kC= ... ... ... , элементы которой вычисляются по формулеm1 ...mk...+ain ⋅ nj , i=1, j=1, ; произведение матриц A и B обозначается AB:ij =ai1 ⋅ 1j +ai2 ⋅ 2jC=AB.1112Пример.1⋅1 2⋅0 1⋅ 12⋅3 1⋅2 2⋅ 41 51 211 23⋅1 4⋅0 3⋅ 14⋅3 3⋅2 4⋅ 43 4⋅3 90 345⋅1 6⋅0 5⋅ 16⋅3 5⋅2 6⋅ 45 65 13Для произведения матриц соответствующих порядков справедливо:1.
A·B ≠ B·A,2. (A + B) · C = A·C + B·C,3. C·(A + B) = C·A + C·B,4. α(A·B) = (αA) ·B,5. (A·B) ·C = A·(B·C),6. (AB)T = B TA T,7. det ⋅det ⋅ det , A, B — квадратные матрицы одинаковой размерности.610.148. AE=EA=A, A— квадратная матрица, E — единичная матрица соответствующейразмерности.Если AB = BA, то матрицы A и B называются перестановочными.Непосредственным вычислением легко проверить основное свойство единичнойматрицыОбратная матрицаОпределение.
Если существует квадратная матрица X той же размерности, что иматрица A, удовлетворяющая соотношениям A·X=X·A=E, то матрица A называетсяобратимой, а матрица X называется обратной к матрице A и обозначается A-1.Здесь E — единичная матрица соответствующей размерности.Т.е. A·A-1= A-1·A=E.Пример.1 1 111 01 0 01 0 0A= 0 1 1 ,X= 0 11 ,A ⋅ X= 0 1 0 ,X ⋅ A= 0 1 0 , ⇒ X=A .0 0 10 010 0 10 0 1Теорема о существовании обратной матрицы. Если det0, то матрицаAобратима и11...det⋅i1...n1Здесь...............1j...ij...nj...............1n...in....nnij — алгебраическое дополнение элементаij матрицыA.Доказательство теоремы. Докажем, что для матрицы B=...............det⋅...n1...... ...
......1ijini (транспонировали матрицу из алгебраических дополнений)...... ... ...1njn ...nnсправедливо: ⋅ B=B ⋅ A=E.∑k= ik ⋅Вычислим ⋅ B= ∑k= ik ⋅ kj⋅ kj⋅ ∑k= ik ⋅ kj .detdetЕсли i=j, то ∑k= ik ⋅ kj ∑k= ik ⋅ ki det — сумма произведений элементов i-й строкиматрицы A на их алгебраические дополнения. Если же Если, то ∑k= ik ⋅ kj 0—11j1сумма произведений элементов i-й строки матрицы A на алгебраические дополнения другой (). Отсюда следует, что диагональные (i=j) элементы матрицы ⋅ равныj-й строки,) — равны нулю, т.е. ⋅ B=E.единице, а внедиагональные (Равенство ⋅ A=Eдоказывается совершенно аналогично. Докажите самостоятельно.Теорема (необходимое и достаточное условие существования обратной матрицы).Для того, чтобы матрица A была обратима, необходимо и достаточно, чтобыdet0.Доказательство теоремы.
Необходимость. Дано: матрица A обратима. Докажем, что det0. Действительно, поскольку A — обратима, то ⋅=Eи det ⋅det ⋅ det0. Отсюда, в частности, следует, что окажем, что det1 0, и, следовательно, detdet.Достаточность. Дано: det0. Но тогда обратимость матрицы A следует из теоремы осуществовании обратной матрицы. Теорема доказана.Теорема о единственности обратной матрицы. Обратная матрица единственна.Доказательство. Докажем «от противного». Пусть это не так, и пусть B=A и C=A ,. Из определения обратной матрицы следует: ⋅ B=B ⋅ A=E, ⋅ C=C ⋅ A=E.Тогда из ассоциативности умножения матриц и свойств единичной матрицы следует:⋅ ⋅ C=E ⋅ C=C, т.е. B=C.Выполним некоторые вычисления: B=B ⋅ E=B ⋅ ⋅доказывает утверждение теоремы.Противоречие с предположениемАналогичными вычислениями можно доказать следующие свойства обратной матрицы:1.⋅=B ⋅.2.=A.Действительно:⋅⋅ ⋅ =B ⋅⋅ ⋅ B=B ⋅⋅ ⋅ B=B ⋅совершенно аналогично, ⋅ ⋅⋅=E, т.е.⋅⋅ E=⋅⋅⋅⋅ A=⋅⋅ B=B⋅⋅ B=E, и.⋅ A=E ⋅ A=A.Нетрудно также доказать, что матрица, обратная к диагональной матрице —диагональная, обратная к треугольной — треугольная, обратная к симметричнойматрице — симметрична.
Докажите эти утверждения самостоятельно.Ниже приведен порядок операций при вычислении обратной матрицы................11...A=...............11...⇒i1...n11j...ij...njПример................i1...n1...............1i...ii...ni1n...in...,detA=Δnn1n...⇒ транспонируем ⇒in...............11......0⇒1i...nn1n11 ......
...1⋅ 1i ...... ...1n ...1 2Вычислим0 50 0j1...ji...jn..............................j1...ji...jnni...nnn1ni...nnсоставим матрицу из алгебраических дополнений:0 65 61⋅∣1⋅∣∣ 10, 12∣ 0, 13110 2211⋅∣2 3∣0 24,221⋅∣1 3∣0 2311⋅∣2 3∣5 63,321⋅∣1 3∣0 62,1матрицу:1004102100Проверим:31061051011 2 30 5 6⋅00 0 20⋅000310351225150⋅∣1330 5∣0 00,1 2∣0 0⋅∣1 2∣0 50,5,36;50, получим обратную3103.51225151⋅∣1236,0;101040 022 0; транспонируем полученную матрицу: 0006 5разделив каждый элемент последней матрицы на detA=101043⇒...31 2 36 :detA= ∣ 0 5 6 ∣20 0 20 2n1...11 0 00 1 0.0 0 1⋅ A= 00251503103 1 2 3⋅0 5 65 0 0 2121 0 00 1 0.0 0 1Матричная запись системы линейных алгебраических уравнений. Рассмотримсистему линейных алгебраических уравнений+a12...+a1n =b ,...+a2n =b ,21 +a22...............................................+amn =b .m1 +am2111121Обозначим: A= ...m11222...m2............1n2n...
, B= ... , X= ... ,mnA — матрица системы, B — правая часть, X — матрица-столбец неизвестных.Тогда:......+a1n1n11 +a12......+a2n21222n21 +a22⋅ X= ...тогда и только тогда,... ... ... ⋅ ............+amnm1m2 ...mnm1 +am2когда для элементов матрицы X справедливы равенства рассмотренной системы. Т.е.система эквивалентна матричному уравнению A·X = B, в том смысле, что если числа,x ,...,x являются решением рассмотренной системы, то соответствующая матрицаX является решением матричного уравнения; и наоборот, если матрица X являетсярешением матричного уравнения, то ее элементы ,x ,...,x являются решениемрассмотренной системы.Матричные уравнения. Рассмотрим матричное уравнение A·X = B.Если m=n и матрица A обратима, то⋅ =A ⋅ B,A⋅⋅⋅ X=E ⋅ X=X, ⇒ X=A ⋅ ,т.е. получили выражение для решения системы матричного уравненияA·X = B.
Ясно, что по этой формуле можно вычислить решение системы n линейныхалгебраических уравнений относительно n неизвестных (см. запись системы вматричной форме).Аналогично, если соответствующие матрицы обратимы, имеем:X·A = B, X = B·A-1,A·X·B = C, X = A-1·C· B-1,A·X+B = 0, A·X = - B, X = - A-1·B.1112Пример.1 2 30 5 60 0 21 2 3X= 0 5 60 0 211 2 31Решим матричное уравнение 0 5 6 ⋅ X= 2:0 0 2310⋅ A= 00⋅01 0 00 1 0.0 0 11⋅23110см.предыдущийпример 01 2 3Проверим: 0 5 6 ⋅0 0 201001⋅2310.12.3Формулы Крамера. Рассмотрим систему n линейных алгебраических уравненийотносительно n неизвестных...+a1n =b ,11 +a12...+a2n =b ,21 +a22...............................................+ann =b .n1 +an2...............11...Обозначим: Δ=detA= ∣i1...n11j...ij...nj...............1n...in...∣— определитель матрицы системы, иnn...11 ...1n...
... ... ... ......∣ i1 ...in ∣ — определитель матрицы, полученной из матрицы... ... ... ... ......n1 ...nnсистемы заменой j-го столбца столбцом правых частей.Если определитель матрицы системы отличен от нуля, Δ=det0, то решениесистемы...+a1n =b ,11 +a12+a...+a2n =b ,2122...............................................+ann =b .n1 +an2,...,x0.определяется равенствами:,xДокажем это утверждение. ПустьΔ=detОбозначим X= ...11...⋅ X=i1...n1...............1j...ij...nj..................и покажем, что...⋅1k=1n...⋅...⋅⋅2k⋅1k=...nnnkk=1kk=2kk=.⋅ X=B.Вычислим1kin,...,x⋅...1nkk=.⋅Вычислим определитель разложением по первому столбцу, определитель — повторому, …,— по n-му:......111n... ...
Характеристики
Тип файла PDF
PDF-формат наиболее широко используется для просмотра любого типа файлов на любом устройстве. В него можно сохранить документ, таблицы, презентацию, текст, чертежи, вычисления, графики и всё остальное, что можно показать на экране любого устройства. Именно его лучше всего использовать для печати.
Например, если Вам нужно распечатать чертёж из автокада, Вы сохраните чертёж на флешку, но будет ли автокад в пункте печати? А если будет, то нужная версия с нужными библиотеками? Именно для этого и нужен формат PDF - в нём точно будет показано верно вне зависимости от того, в какой программе создали PDF-файл и есть ли нужная программа для его просмотра.