Учебник - Аналитическая теория дифференциальных уравнений - Ильяшенко Ю.С. (1238784), страница 102
Текст из файла (страница 102)
Anosov D. V., Bolibruch A. A. The Riemann — Hilbert problem. Braunschweig: ViewegPubl., 1994.2. Babbitt D. G., Varadarajan V. S. Local moduli for meromorphic differential equations //Astérisque. 1989. V. 217. P. 169–170.3. Belliart M., Liousse I., Loray F. Sur l’existence de points fixes attractifs pour lessous-groupes de Aut(C, 0) // C. R. Acad.
Sci. Paris Sér. I Math. 1997. V. 324, № 4.P. 443–446.4. Bendixson I. Sur les courbes définies par des équations différentielles // Acta Math.1901. V. 24. P. 1–88.5. Berthier M., Cerveau D., Lins Neto A. Sur les feuilletages analytiques réels et le problèmedu centre // J. Differential Equations.
1996. V. 131, № 2. P. 244–266.6. Berthier M., Moussu R. Réversibilité et classification des centres nilpotents // Ann.Inst. Fourier (Grenoble), 44(2):465–494, 1994.7. Bibikov Yu. N. Local theory of nonlinear analytic ordinary differential equations. Berlin:Springer-Verlag, 1979. (Lecture Notes in Mathematics; V. 702).8. Camacho C., Lins Neto A., Sad P. Topological invariants and equidesingularization forholomorphic vector fields // J. Differential Geom. 1984.
V. 20, № 1. P. 143–174.9. Camacho C., Sad P. Invariant varieties through singularities of holomorphic vectorfields // Ann. of Math. Ser. 2. 1982. V. 115, № 3. P. 579–595.10. Candel A., Conlon L. Foliations. I, II. Providence, RI: Amer. Math. Soc., 2000, 2003.(Graduate Studies in Mathematics; V. 23, 60).11. Cano J. Construction of invariant curves for singular holomorphic vector fields //Proc. Amer. Math.
Soc. 1997. V. 125, № 9. P. 2649–2650.12. Capani J., Niesi G., Robbiano L. CoCoA, a system for doing Computations in Commutative Algebra. Version 4.0. Available from ftp://cocoa.dima.unige.it, 2000.13. Carleson L., Gamelin T. W. Complex dynamics. New York: Springer-Verlag, 1993.(Universitext: Tracts in Mathematics).14. Cox D., Little J., O’Shea D. Ideals, varieties, and algorithms. New York: Springer-Verlag,1997. (Undergraduate Texts in Mathematics).
Рус. перев.: Кокс Д., Литтл Дж.,О’Ши Д. Идеалы, многообразия и алгоритмы. М.: Мир, 2000.15. Dries L. van den. Alfred Tarski’s elimination theory for real closed fields // J. SymbolicLogic. 1988. V. 53, № 1. P. 7–19.16. Dulac H. Détermination et intégration d’une certaine classe d’équations différentiellesayant pour point singulier un centre // Bull. Sci. Math. Sér. 2. 1908.
V. 32. P. 230–252.17. Dumortier F. Singularities of vector fields on the plane // J. Differential Equations.1977. V. 23, № 1. P. 53–106.18. Dumortier F. Techniques in the theory of local bifurcations: blow-up, normal forms,nilpotent bifurcations, singular perturbations // Bifurcations and periodic orbits ofvector fields (Montreal, PQ, 1992). Dordrecht: Kluwer Acad. Publ., 1993. P. 19–73.(NATO Adv.
Sci. Inst. Ser. C Math. Phys. Sci.; V. 408).Литература42319. Écalle J. Introduction aux fonctions analysables et preuve constructive de la conjecturede Dulac. Paris: Hermann, 1992. (Actualités Mathématiques).20. Edwards R. E. Fourier series. A modern introduction. V. 1. New York: Springer-Verlag,1979. (Graduate Texts in Mathematics; V. 64). Рус. перев.: Эдвардс Р. Ряды Фурье всовременном изложении.
Т. 1–2. М.: Мир, 1985.21. Essen A. van den. Reduction of singularities of the differential equation A dy = B dx //Équations différentielles et systèmes de Pfaff dans le champ complexe (Sem., Inst.Rech. Math. Avancée, Strasbourg, 1975). Berlin: Springer, 1979. P. 44–59. (LectureNotes in Mathematics; V. 712).22. Farr W. W., Li Chengzhi, Labouriau I. S., Langford W. F.
Degenerate Hopf bifurcationformulas and Hilbert’s 16th problem // SIAM J. Math. Anal. 1989. V. 20, № 1. P. 13–30.23. Feldman I., Markus A. On some properties of factorization indices // Integral EquationsOperator Theory. 1998. V. 30, № 3. P. 326–337.24. Forster O. Lectures on Riemann surfaces. New York: Springer-Verlag, 1991. (GraduateTexts in Mathematics; V. 81). Рус.
перев.: Форстер О. Римановы поверхности. М.:Мир, 1980.25. Francoise J.-P., Yomdin Y. Bernstein inequalities and applications to analytic geometryand differential equations // J. Funct. Anal. 1997. V. 146, № 1. P. 185–205.26. Fritzsche K., Grauert H. From holomorphic functions to complex manifolds. New York:Springer-Verlag, 2002. (Graduate Texts in Mathematics; V. 213).27. Gambaudo J.-M., Le Calvez P., Pécou É. Une généralisation d’un théorème de Naishul //C.
R. Acad. Sci. Paris Sér. I Math. 1996. V. 323, № 4. P. 397–402.28. Griffiths P., Harris J. Principles of algebraic geometry. New York: Wiley-Interscience[John Wiley & Sons], 1978. Рус. перев.: Гриффитс Ф., Харрис Дж. Принципыалгебраической геометрии: В 2 т. М.: Мир, 198229. Gunning R. C., Rossi H. Analytic functions of several complex variables. EnglewoodCliffs, N.
J.: Prentice-Hall Inc., 1965. Рус. перев.: Ганнинг Р., Росси Х. Аналитическиефункции многих комплексных переменных. М.: Мир, 1969.30. Hartman P. Ordinary differential equations. Boston, Mass.: Birkhäuser, 1982. Рус.перев.: Хартман Ф. Обыкновенные дифференциальные уравнения. М.: Мир, 1970.31. Hauser H., Risler J.-J., Teissier B. The reduced Bautin index of planar vector fields //Duke Math. J. 1999. V.
100, № 3. P. 425–445.32. Hervé M. Several complex variables. Local theory. London: Oxford University Press,1963. Рус. перев.: Эрве М. Функции многих комплексных переменных. М.: Мир,1965.33. Hilbert D. Mathematische probleme // Archiv der Mathematik und Physik. 1901. Bd. 3,№ 1. S. 44–63, 213–237.34. Ilyashenko Yu. S. Centennial history of Hilbert’s 16th problem // Bull. Amer. Math.Soc. (N. S.). 2002. V.
39, № 3. P. 301–354.35. Ilyashenko Yu. S. Finiteness theorems for limit cycles. Providence, RI: Amer. Math.Soc., 1991. (Translations of Mathematical Monographs; V. 94).36. Ince E. L. Ordinary Differential Equations. New York: Dover Publications, 1944. Рус.перев.: Айнс Э. Л. Обыкновенные дифференциальные уравнения. Харьков: ОНТИ,1939.37. Kelley A. The stable, center-stable, center, center-unstable, unstable manifolds // J. Differential Equations.
1967. V. 3. P. 546–570.38. Khovanskii A., Yakovenko S. Generalized Rolle theorem in R and C // J. Dynam.Control Systems. 1996. V. 2, № 1. P. 103–123.424Литература39. Kleban O. Order of the topologically sufficient jet of a smooth vector field on the realplane at a singular point of finite multiplicity // Concerning the Hilbert 16th problem.Providence, RI: Amer. Math.
Soc., 1995. P. 131–153. (Amer. Math. Soc. Transl. Ser. 2;V. 165).40. Kostov V. P. Fuchsian linear systems on CP 1 and the Riemann — Hilbert problem //C. R. Acad. Sci. Paris Sér. I Math. 1992. V. 315, № 2. P. 143–148.41. Lefschetz S. On a theorem of Bendixson // Bol.
Soc. Mat. Mexicana. Ser. 2. 1956. V. 1.P. 13–27.42. Lefschetz S. On a theorem of Bendixson // J. Differential Equations. 1968. V. 4. P. 66–101.43. Loray F. A preparation theorem for codimension-one foliations // Ann. of Math. Ser. 2.2006. V. 163, № 2. P. 709–722.44. Loray F.
Pseudo-groupe d’une singularité de feuilletage holomorphe en dimensiondeux. Leçons de Tordesillas, 2006.45. Mattei J.-F., Moussu R. Holonomie et intégrales premières // Ann. Sci. École Norm.Sup. Ser. 4. 1980. V. 13, № 4. P. 469–523.46. Maxima. Maxima, a computer algebra system.
Version 5.25.1, 2011. URL: http://maxima.sourceforge.net/.47. Moussu R. Sur l’existence d’intégrales premières holomorphes // Ann. Scuola Norm.Sup. Pisa Cl. Sci. Ser. 4. 1998. V. 26, № 4. P. 709–717.48. Moussu R. Une démonstration géométrique d’un théorème de Lyapunov — Poincaré //Bifurcation, ergodic theory and applications (Dijon, 1981). Paris: Soc. Math. France,1982. P. 216–223. (Astérisque; V. 98).49.
Nakai I. Separatrices for nonsolvable dynamics on C, 0 // Ann. Inst. Fourier (Grenoble).1994. V. 44, № 2. P. 569–599.50. Pérez-Marco R. Total convergence or general divergence in small divisors // Comm.Math. Phys. 2001. V. 223, № 3. P. 451–464.51. Perko L. Differential equations and dynamical systems. New York: Springer-Verlag,2001. (Texts in Applied Mathematics; V. 7).52. Plemelj J. Problems in the sense of Riemann and Klein.
Interscience Publishers JohnWiley & Sons Inc. New-York — London — Sydney, 1964. (Interscience Tracts in Pureand Applied Mathematics; V. 16).53. Pugh C., Shub M. Linearization of normally hyperbolic diffeomorphisms and flows //Invent. Math. 1970. V. 10. P. 187–198.54. Put M. van der, Singer M. F. Galois theory of linear differential equations. Berlin:Springer-Verlag, 2003. (Grundlehren der Mathematischen Wissenschaften; V. 328).55.
Roussarie R. Bifurcation of planar vector fields and Hilbert’s sixteenth problem. Basel:Birkhäuser Verlag, 1998.56. Roussarie R. Cyclicité finie des lacets et des points cuspidaux // Nonlinearity. 1989.V. 2, № 1. P. 73–117.57. Roytwarf N., Yomdin Y. Bernstein classes // Ann. Inst. Fourier (Grenoble). 1997. V. 47,№ 3. P. 825–858.58. Schlomiuk D. Algebraic and geometric aspects of the theory of polynomial vectorfields // Bifurcations and periodic orbits of vector fields (Montreal, PQ, 1992).Dordrecht: Kluwer Acad.