Главная » Просмотр файлов » Краткий очерк истории математики. Стройк (5-е издание) (1990)

Краткий очерк истории математики. Стройк (5-е издание) (1990) (1185896), страница 18

Файл №1185896 Краткий очерк истории математики. Стройк (5-е издание) (1990) (Краткий очерк истории математики. Стройк (5-е издание) (1990).doc) 18 страницаКраткий очерк истории математики. Стройк (5-е издание) (1990) (1185896) страница 182020-08-25СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 18)

«Великое искусство» Кардано содержало и другое блестящее открытие: метод Феррари сведения решения общего уравнения четвертой степени к решению кубического уравнения. Уравнение Феррари имело вид х4 + 6х2 + 36 = 60х, он его сводил к уравнению у3 + 15у2 + 36у = 450. Кардано рассматривал и отрицательные числа, называя их «вымышленными», но он не был в состоянии что-либо сделать в так называемом «неприводимом случае» уравнения третьей степени, когда налицо три действительных корня, но они получаются в виде суммы или разности чисел, называемых теперь мнимыми. Эта трудность была преодолена последним из больших болонских математиков шестнадцатого века, Рафаэлем Бомбелли, чья «Алгебра» появилась в 1572 г. В этой книге и в «Геометрии», написанной около 1550 г. и оставшейся в рукописи, он вводит последовательную теорию мнимых и комплексных чисел. Он записывает 3i как √0—9 (буквально так: R[0m,9], где R обозначает корень (radix), а т обозначает meno, т. е. меньше, минус). Это позволило Бомбелли разрешить неприводимый случай, показав, например, что

Книгу Бомбеллп читали многие: Лейбниц изучал по ней кубические уравнения, Эйлер цитирует Бомбелли в своей «Алгебре», в главе об уравнениях четвертой степени. Отныне комплексные числа потеряли кое-что из сверхъестественности, хотя полное их признание произошло только в девятнадцатом столетии.

Любопытен тот факт, что впервые мнимости были введены в теории кубических уравнений в том случае, когда

было ясно, что действительное решение существует, хотя и в нераспознаваемом виде, а не в теории квадратных уравнений, в которой они появляются в наших современных учебниках.

8. Алгебра и арифметика в течение многих десятилетий оставались у математиков любимым объектом исследований. Это стимулировалось не только Rechenhaftigkeit торговой буржуазии, но также и запросами землемерия и мореплавания, которые выдвигались правительствами новых национальных государств. Инженеры были нужны для возведения публичных зданий и военных сооружений. Астрономия, как и в предыдущие периоды, оставалась важной областью математических исследований. Это было время великих астрономических теорий Коперника, Тихо Браге и Кеплера. Возникло новое представление о вселенной.

Философская мысль отражала тенденции научного мышления, и Платон с его преклонением перед количественным и математическим рассуждением начал брать верх над Аристотелем. В частности, влияние Платона очевидно в работах Кеплера. Появлялись все более точные тригонометрические и астрономические таблицы, прежде всего в Германии. Таблицы Ретика (G. J. Rha'ticus), законченные в 1596 г. его учеником Валентином Ото (Otho), содержали значения всех шести тригонометрических величин через каждые десять секунд с десятью знаками. Таблицы Питискуса (Pitiscus, 1613 г.) были доведены до пятнадцатого знака. Совершенствовалась техника решения уравнений, углублялось понимание природы их корней. Для этой эпохи характерен публичный вызов, сделанный в 1593 г. бельгийским математиком Адриеном ван Роменом (Roomen), решить уравнение сорок пятой степени

x45–45x43+945x41–12300x38+...–3795x3+45х=А.

Ван Ромен указал некоторые частные случаи, например:

А = , что дает

X=

эти случаи подсказаны рассмотрением правильных многоугольников. Франсуа Виет, французский юрист, состо

я

Франсуа Виет

(1540—1603)

вший при дворе Генриха IV, решил задачу ван Ромена, заметив, что левая часть уравнения соответствует выражению sin через sin(/45). Поэтому решение можно найти с помощью таблиц. Виет нашел двадцать три решения вида sin(/45+n•80) отбрасывая отрицательные корни. Он также свел решение Кардано кубического уравнения к тригонометрическому, и при этом неприводимый случай перестал быть устрашающим, так как дело обошлось без введения выражений вида . Это решение можно теперь найти в учебниках высшей алгебры.

Главное достижение Виета состоит в усовершенствовании теории уравнений (например, в работе «Введение в аналитическое искусство», In artem analyticam isagoge, 1591 г.). Он был одним из первых, кто числа изображал буквами. Использование численных коэффициентов, даже в «риторической» алгебре школы Диофанта, препятствовало общему рассмотрению алгебраических задач. Работы алгебраистов шестнадцатого века («коссистов», от итальянского слова cosa—«вещь», «нечто»,— которым обозиачали неизвестное) написаны с помощью очень сложных обозначений. Но «видовая логистика» Виета означала появление (наконец-то) общей символики, в которой буквы были использованы для выражения численных коэффициентов, знаки «+» и « —» применялись в нашем современном смысле, а вместо А2 писали: «А квадратное». Эта алгебра все еще отличалась от нашей из-за того, чго Виет придерживался греческого принципа однородности, согласно которому произведение двух отрезков обязательно рассматривалось как площадь и в соответствии с этим отрезки можно было складывать только с отрезками, площади с площадями, объемы с объемами. Даже сом

невались в том, имеют ли смысл уравнения степени выше третьей, так как они могли быть истолкованы лишь в четырех измерениях, а это едва ли можно было понять в те времена.

В описываемый период вычислительная техника достигла новых высот. Виет улучшил результат Архимеда и нашел  с девятью десятичными знаками. Вскоре после того  было вычислено с тридцатью пятью десятичными знаками Лудольфом ван Цепленом (Ludoif van Ceulen) из Дельфта, использовавшим описанные и вписанные правильные многоугольники со все большим и большим числом сторон. Виет нашел также выражение  в виде бесконечного произведения (1593г.); в наших обозначениях:

Усовершенствование техники было результатом усовершенствования обозначений. А новые результаты показывают, что было бы неверным заявлять, будто люди, подобные Виету, «всего лишь» усовершенствовали обозначение. Подобные заявления пренебрегают глубокой зависимостью между содержанием и формой. Новые результаты часто становятся возможным лишь благодаря новому способу записи. Одним из примеров этого является введение индийско-арабских цифр, другим примером может быть символика Лейбница в анализе. Подходящее обозначение лучше отображает действительность, чем неудачное, и оно оказывается как бы наделенным собственной жизненной силой, которая в свою очередь порождает новое. За усовершенствованием обозначений Виета поколение спустя последовало применение алгебры к геометрии у Декарта.

9. В новых торговых государствах, особенно во Франции, Англии и Голландии, был большой спрос на инженеров и «арифметиков». Астрономия процветала во всей Европе. После открытия морского пути в Индию итальянские города уже не были на магистральной дороге, ведущей на Восток, хотя они еще оставались важными центрами. Вот в связи с этим мы среди великих математиков и вычислителей начала семнадцатого века видим инженера Симона Стевива, астронома Иоганна Кеплера, землемеров Адриана Бланка и Езекииля де Деккера.

Стевин, бухгалтер из Брюгге, стал инженером в армии принца Морица Оранского, оценившего в нем сочетание здравого смысла, оригинальности и теоретического мыш

ления. В работе «Десятая» (La disme, 1585 г.) он ввел десятичные дроби, что было составной частью проекта унификации всей системы мер на десятичной основе. Это было одним из больших усовершенствований, которые стали возможными благодаря всеобщему принятию индийскоарабской системы счисления.

Д

Джон Непер (1550—1817)

ругим большим усовершенствованием вычислительной техники было изобретение логарифмов. Некоторые математики шестнадцатого столетия в известной мере занимались сопоставлением арифметической и геометрической прогрессий, главным образом с целью облегчить работу со сложными тригонометрическими таблицами. Важным достижением на этом пути мы обязаны шотландскому лорду Джону Неперу (Neper или Napier), который в 1914 г. напечатал свое «Описание удивительного канона логарифмов» (Mirifici logarithmorum canoriis descriptio). Основной идеей Непера было построение двух последовательностей чисел, связанных таким образом, что когда одна из них возрастает в арифметической прогрессии, другая убывает в геометрической. При этом произведение двух чисел второй последовательности находится в простой зависимости от суммы соотетствующих чисел первой последовательности и умножение можно свести к сложению. С помощью такой системы Непер мог значительно облегчить вычислительную работу с синусами. Первоначальный способ Непера был в достаточной мере неуклюжим, так как его две последовательности соответствовали, в современных обозначениях, формуле

у =аex/a (или х = Nep log y), где а= 107 1).

') Следовательно, Nep log у = 107 (ln 107 — ln у) = 161180957– 107 ln у и Nep log 1 = 161 180 957; здесь ln x обозначает наш натуральный логарифм

Когда x=x1+x2, мы получаем не у = y1y2 , a у = y1y2/a.

Такая система не удовлетворяла и самого Непера, как он сообщил своему почитателю Генри Бриггсу, профессору одного из лондонских колледжей. Они решили выбрать функцию у=10x, при которой x=x1+x2 действительно дает у = y1y2.

После смерти Непера Бриггс осуществил это предложение и в 1624 г. опубликовал свою «Логарифмическую арифметику», содержавшую «бригговы» логарифмы с четырнадцатью знаками для целых чисел от 1 до 20 000 и от 90 000 до 100 000.

Пробел от 20 000 до 90 000 был заполнен Езекиилем де Деккером, голландским землемером, который с помощью Бланка опубликовал в 1627 г. полную таблицу логарифмов.

Новое изобретение сразу же приветствовали математики и астрономы, в частности Кеплер, который до этого приобрел большой и нелегкий опыт в деле обширных вычислений.

Данное здесь истолкование логарифмов с помощью показательной функции исторически в известной мере ложно, так как понятие показательной функции восходит только к концу семнадцатого века. У Непера не было понятия основания логарифмов.

Натуральные логарифмы, связанные с функцией у =ex, появились почти одновременно с бригговыми, по их фундаментальное значение было понято лишь тогда, когда стали лучше понимать исчисление бесконечно малых ').

[6] В кратком изложении истории математики в средние века имеются существенные пробелы Одним из них является то, что совершенно нет сведений о математике у славянских народов и в Закавказье. В связи с этим мы отсылаем читателя к книге История отечественной математики/Под редакцией И. 3. Штопало. Т. I: От древнейших времен до конца XVIII в.— Киев, 1966.

См также:

Петросяп Г. В. История математики в Армепии/На армянском языке, русск. и английск. резюме.— Ереван, 1960.

') Некоторые натуральные логарифмы вычислили Райт (Е. Wright, 1618 г.) и Спейдель (J. Speidel, 1619 г.); но после этого никакие таблицы этих логарифмов не появлялись до 1770 г. См С a j о г i F. History of the Exponential and Logarithmic Concepts II Amer. Math. Monthly.— 1913.— V. 20,

Ц х а к а я Д. Г. История математических наук в Грузии с ввнейших времен до начала XX века.— Тбилиси, 1959 Кирик Новгородец. Учение им же ведати человеку числа всех лет/Примечания В. П. Зубова / Историко-математические исследования, вып. VI. М.: Гостехиздат, 1953.

Зубов В. П. Кирик Новгородец и древнерусские деления часа II Историкоматематические исследования, вып. VI.— М.: Гостехиздат, 1953.

Феттер Г. Краткий обзор развития математики в чешских землях до Белогорской битвы // Историко-математические исследования, вып. XI.— М.: Физматгиз, 1958.

В изложении автора не затронут и такой, правда, мало исследованный вопрос, как роль Византии в сохранении и передаче научного наследия античности. См. в связи с этим

Vogel К. Der Anteil von Bizanz an Krhanltung und Weiterbildung der griechischen Mathernatik.— Miscellanea Mediaevalia. T. I, 1962.

ЛИТЕРАТУРА

О распространении индийскоарабских цифр в Европе см.:

Smith D. Е., К а г р i n s k i L. С. The HinduArabic Numerals.— Boston, London, 1911.

Характеристики

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6418
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее