Lektsii_zubova_1 (1181473), страница 2
Текст из файла (страница 2)
. .]ξx ξ y + c[. . .]ξ2yĉ(ξ, η) = a[. . .]η2x + 2b[. . .]ηx η y + c[. . .]η2yb̂(ξ, η) = a[. . .]ξx ηx + b[. . .](ηx ξ y + η y ξx ) + c[. . .]ξ y η ya(x, y); b(x, y); c(x, y) ∈ C2 (Ω)I ñëó÷àé. Ãèïåðáîëè÷åñêèé ñëó÷àéûξη + F̂(ξ, η, û, ∇û)(d < 0)â îêðåñòíîñòè- âòîðàÿ êàíîíè÷åñêàÿ ôîðìàâ(ξ, η) ≡ 0ĉ(ξ, η) ≡ 0a(x, y)ω2x + 2b(x, y)ωx ω y + c(x, y)ω2y = 0ω(x, y) ∈ C2 (u(x0 , y0 )) ∇ω(x, y) , 0- õàðàêòåðèñòè÷åñêîå óðàâíåíèå. ξ (x, y) ξ y (x, y)det J(x, y) = xηx (x, y) η y (x, y)åñëèIaω(x, y) = 0a(x0 , y0 ) , 0cbω2x +2 ωx ω y + ω2yaãäåa- õàðàêòåðèñòèêà, òî( ëèáî=(x0 , y0 )c(x0 , y0 ) , 0),ω̃(x, y) = ω(x, y) − C = 0òîãäà∃U(x0 , y0 ),bb2ca − b2 2ω2x +2ωx ω y + 2 ω2y +ωyaaa2√b± b2 − acλ± (x, y) =a,0- òîæå õàðàêòåðèñòèêà.â êîòîðîéa(ëèáîc) , 0)2 2bb − ac 2= ωx + ω y −ω y = [ωx +λ+ (x, y)ω y ][ωx +λ− (x, y)ω y ]aa2(- ôóíêöèè äåéñòâèòåëüíîãî ïåðåìåííîãî. Áîëåå òîãî:81)λ+ (x,y) , λ− (x, y), ∀x, y ∈ U(x0 , y0 )20 022)λ± (x, y) ∈ C (U(x , y )) (òàê êàê a, b, c ∈ C ){ωx + λ+ (x, y)ω y = 0ωx + λ− (x, y)ω y = 0ðåøåíèÿ õàðàêòåðèñòè÷åñêîãî óðàâíåíèÿ.Âñïîìíèì íåêîòîðûå ôàêòû èç êóðñà äèôôåðåíöèàëüíûõ óðàâíåíèé.a1 (x, y)ωx + a2 (x, y)ω y = 01)ω(x,y) ∈ C2 ; ∇ω , 0, ∃ωdydy a2dx2)=⇔ a2 dx − a1 dy = 0=a1 (x, y) a2 (x, y)dx a1dydxÒî åñòü â íàøåì ñëó÷àå=⇔ dy = λ± dx1λ±Óòâåðæäåíèå{∃îêðåñòíîñòüη = η(x, y) = ω+ξ = ξ(x, y) = ω−U(x0 , y0 )aòàêàÿ, ÷òî îòîáðàæåíèåC2äèôôåîìîðôèçì êëàññàÍàäî ïîñìîòðåòü íà ßêîáèàí ýòîãî îòîáðàæåíèÿ.
Èìååì:{ξx + λ + ξ y = 0ηx + λ+ η y = 0 ξ (x0 , y0 ) ξ y (x0 , y0 )det J(x , y ) = x 0 0ηx (x , y ) η y (x0 , y0 )0Åñëè0â ñèëó âûáîðà −λ+ ξ y = −λ− ξ yη y (x0 , y0 ) = 0 ⇒ ξx (x0 , y0 ) = 0 ⇒ ∇ω = 0ξyηyξèη0 00 00 00 0 = [λ− (x , y ) − λ+ (x , y )]ξ y (x , y )η y (x , y ) , 0- ïðîòèâîðå÷èåa(x, y)uxx + 2b(x, y)uxy + c(x, y)u yy + F(x, y, u, ux , u y ) = 0a(x, y)· dy· dy − 2b(x, y)· dy· dx + c(x, y)· dx· dx = 0 − óðàâíåíèådy = λ± dxdy − λ+ dx = 0;dy − λ− dx = 0 ⇒ (dy − λ+ dx = 0)(dy − λ− dx = 0) = dy2 − (λ+ + λ− )· dx· dy + λ+ λ− dx2 = 02b λ+ + λ− = ac λ+ λ− =aÓðàâíèíèÿ äëÿíèèâ = ĉ ≡ 0.Çàìåíîéõàðàêòåðèñòèêâïîëó÷àåì, ÷òî ýòî äåéñòâèòåëüíî óðàâíåíèå õàðàêòåðèñòèêèĉñîâïàäàþò ñ óðàâíåíèÿìè õàðàêòåðèñòèê, ïîýòîìó ïðè óêàçàííîì îòîáðàæå-Òî åñòü äàííîå îòîáðàæåíèå äåéñòâèòåëüíî ïðèâîäèò ê æåëàåìîé ôîðìå.α=ξ+ηèβ=ξ−ηIáa(x, y) = c(x, y) ≡ 0Iâa(x0 , y0 ) = c(x0 , y0 ) = 0,{ξ=x+yη=x−yìîæíî ïðèâåñòè ê I êàíîíè÷åñêîé ôîðìå.â íåêîòîðîé îêðåñòíîñòèíî â∀îêðåñòíîñòè- ïîâîðîò, òîãäà(x0 , y0 ),òîãäà æåëàåìîå óæå äîñòèãíóòî.(x0 , y0 ) ∃(x∗, y∗),òàêàÿ ÷òîâ(x0 , y0 ) = 2b(x0 , y0 ) , 0 ⇒ ñâåëèII Ïàðàáîëè÷åñêèé ñëó÷àéa(x, y)uxx + 2b(x, y)uxy + c(x, y)u yy + F(x, y, u, ux , u y ) = 0d = ac − b2 = a(x, y)c(x, y) − b2 (x, y) ≡ 0 â íåêîòîðîé îêðåñòíîñòè (x0 , y0 )a(x0 , y0 ) , 0,| {z }ëèáîa2 (x∗, y∗) + c2 (x∗, y∗) , 0c(x0 , y0 ) , 0íå óìàëÿÿ îáùíîñòè9ê ñëó÷àþ Iaa(x, y)ω2x + 2b(x, y)ωx ω y + c(x, y)ω2y = 0- óðàâíåíèå äëÿ õàðàêòåðèñòèê.(ωx + λ+ ω y )(ωx + λ− ω y ) = 0, ãäå√b± b2 − acλ± =, è ìû èìååì òîëüêîabωx + λω y = 0; λ =(∗)aη(x, y) = ω(x, y) ∈ C2 (U(x0 , y0 )){ξ = ξ(x, y) − ïðîèçâîëüíûìη = η(x, y) − ðåøåíèå (∗)∇η , 0 ∀(x, y) ∈ U(x0 , y0 )x0, y0îáðàçîì, ÷òîáû áûë äèôôåîìîðôèçì âC2À ìîæíî ëè òàê âûáðàòü? Ìîæíî, íî çäåñü ìû îïóñòèì äîêàçàòåëüñòâîýòîãî ôàêòà.1)ĉ(ξ, η)≡ 0 ïðè ýòîì ïðåîáðàçîâàíèè.( òàê áðàëè η)≡ 0, äîêàæåì ýòî: = J· A· JT ⇒ det  = det A(det J)2 = (ac − b2 )(det J)2 ⇒ det  ≡ 0 = âĉ − b̂2 ⇒ b̂(ξ, η) ≡ 02)b̂(ξ, η)â(ξ, η)ûξ,η + F̂(ξ, η, û, ∇ξ,η û) = 0,â(ξ, η) .
0,ïðè÷¼ìòàê êàê èíà÷å óðàâíåíèå áóäåò 1-îãî ïîðÿäêà, à ïîíèæåíèå ïîðÿäêà ïðè äèô-ôåîìîðôèçìå íåâîçìîæíî. Óïðîùàÿ, èìååì:ˆ η, û, ∇ û) = 0ûξξ + F̂(ξ,ξ,ηIII Ýëëèïòè÷åñêèé ñëó÷àéa(x, y)uxx + 2b(x, y)uxy + c(x, y)u yy + F(x, y, u, ux , u y ) = 0d = ac − b2 = a(x, y)c(x, y) − b2 (x, y) > 0Òîãäàa(x, y) , 0Äåéñòâèòåëüíî,λ± =b±(x0 , y0 )c(x, y) , 0 â îêðåñòíîñòè (x0 , y0 ) .2åñëè a(x∗, y∗) = 0, òî d = a(x, y)c(x, y) − b (x, y) > 0,èíîd = −b2 (x∗, y∗) 6 0.√b2 − ac= µ(x, y) ± i ν(x, y)aωx + λ± (x, y) = 0,{{â íåêîòîðîé îêðåñòíîñòèðåøåíèÿìè áóäóò:ω(x, y) = ξ(x, y) + i η(x, y)−∇ξ(x, y) , 0, ∇η(x, y) , 0ξx + µξ y − νη y = 0−ηx + νξ y + µη y = 0èç òåîðåìû Êîøè-Êîâàëåâñêîéíåñëîæíî ïðîâåðèòüñäåëàåì çàìåíó ïåðåìåííûõ{1)ξ = ξ(x, y)η = η(x, y)ν,02) Åñëè ξdet J(x, y) = xηxξyηy (−µξ y + νη y ) ξ y 22 = (−νξ y + µη y ) η y = ν[ξ y + η y ] , 0,ξ y = η y = 0 ⇒ ξx = ηx = 0 ⇒ ∇ξ = 0(aξ2x + 2bξx ξ y + cξ2y ) − (aη2x + 2bηx η y + cη2y ) = 0 ⇒ â = ĉ(aξx ηx + b(ξx η y + ξ y ηx ) + cξx η y ) = 0 ⇒ b̂ = 0Ýòè ðàâåíñòâà ìû ïîëó÷èëè, ïîäñòàâèâòî åñòüωâ óðàâíåíèå õàðàêòåðèñòèê.â(ξ, η)ûξξ + â(ξ, η)ûηη + F̂(ξ, η, û, ∇ξ,η û) = 0,è îêîí÷àòåëüíî èìååì:ˆ η, û, ∇ û) = 0ûξξ + ûηη + F̂(ξ,ξ,η10òàê êàêÇàäà÷à Êîøè äëÿ óðàâíåíèÿ ìàëûõ êîëåáàíèé ñòðóíû.utt − a2 uxx = 0 u(y, x) = u (x)0t=0 u (t, x) = u (x)t1t=0−l<x<l(dx)2 − a2 (dt)2 = 0 ⇒ (dx + adt)(dx − adt) = 0{ŷξη = 0,(∗)ξ = x + atη = x − atâ ñèëó ëèíåéíîñòè çàìåíû îò âòîðûõ ïðîèçâîäíûõ äîáàâîê íåòû(ξ, η) = f (ξ) + g(η)u(x, y) = f (x + at) + g(x − at)- ñóììà äâóõ âîëí.
Äàëàìáåð â 1747 ãîäó îòêðûë ýòîò ôàêò.Çàäà÷à Êîøè áóäåò "õîðîøåé".u(t, x)t=0 = f (x) + g(x) = u0 (x), |x| < lut (t, x)t=0 = a f ′ (x) − ag′ (x) = u1 (x), |x| < l11[ f (x) − g(x)]′ = u1 (x) ⇒ f (x) − g(x) = U1 (x),aa∫tx-at=0ãäåxlU1 (x) =u1 (ξ)dξ + C, òî åñòü:−l11 f (x) = u0 (x) + U1 (x)22a|x| < l11 f (x) = u0 (x) − U1 (x)22au0 (x + at) + u0 (x − at) U1 (x + at) − U1 (x − at)1111u(t, x) = u0 (x+at)+ U1 (x+at)+ u0 (x−at)− U1 (x−at) =+22a22a22a∫ x+atU1 (x + at) − U1 (x − at) =u1 (ξ)dξ ⇒x−at∫ x+atu0 (x + at) + u0 (x − at)u(x, t) =+u1 (ξ)dξ(∗∗)2x−atÝòî ôîðìóëà Äàëàìáåðà, êîòîðóþ Ýéëåð äîêàçàë â 1748 ãîäó.tÍàéä¼ì îáëàñòü, â êîòîðîé ðåøåíèå îïðåäåëåíî îäíîçíà÷íî.Ýòî ðîìáQ,îãðàíè÷åííûé íåðàâåíñòâàìè|x + at| < l; |x − at| < lx"ìîæíî çàãëÿíóòü â ïðîøëîå"Ýòà îáëàñòü áóäåò ìàêñèìàëüíîé, òàê êàê íàïðèìåð ïðèâçÿòü ëþáîå íåïðåðûâíîå ïðîäîëæåíèåu0 (x),x > lìîæíîè ïîëó÷èòü ðåøåíèå â áîëü-øåì ðîìáå.ìû òîëüêî ÷òî äîêàçàëè ñëåäóþùóþ òåîðåìó:u0 (x) ∈ C2 ((−l, l)), u1 (x) ∈ C1 ((−l, l)), òîãäà Çàäà÷à Êîøè (*) èìååò â Q åäèíñòâåíu(t, x) ∈ C (Q), îíî íàçûâàåòñÿ êëàññè÷åñêèì, è ïðåäñòàâèìî ôîðìóëîé Äàëàìáåðà (**)Òåîðåìà 2.1 Ïóñòüíîå ðåøåíèå2Ïîêàæåì, ÷òî ðåøåíèå íåïðåðûâíî çàâèñèò îò 1utt − a2 u1xx = 0 u1 = u1 (x), |x| < l0t=0 u1 = u1 (x), |x| < lt t=01|u10 (x) − u20 (x)| 6 δ0 ;v0 (x) = u10 (x) − u20 (x);(1)|u11 (x) − u21 (x)| 6 δ1u0èu1 2utt − a2 u2xx = 0 u2 = u2 (x), |x| < l0t=0 u2 = u2 (x), |x| < lt t=01∀|x| < lv1 (x) = u11 (x) − u21 (x)11(2)u1 (t, x) − u2 (t, x) = v(t, x)vtt − a2 vxx = 0(x, t) ∈ Qv t=0|x| < l|v0 (x)| 6 δ0 = v0 (x)vt t=0 = v1 (x)|x| < l|v1 (x)| 6 δ1∫ x+at|v0 (x + at)| + |v0 (x − at)|1|x + at − x + at||v(t, x)| 6+|v1 (ξ)dξ| 6 δ0 + sup |v1 (ξ)|622a x−at2a|ξ|<l16 δ0 + δ1 2at = δ0 + δ1 t2alÅñëè l < +∞, òî ýòî 6 δ0 + δ1→0aÅñëè îãðàíè÷åíî âðåìÿ, òî ýòî 6 δ0 + δ1 T → 0Çàäà÷à (*) êîððåêòíà.{(∗)L(x, D)Γ∈ΩÏóñòüL(x, D)u(x) = f (x), x ∈ Ω ⊂ RnB j (x, D)u(x) = gi (x), x ∈ Γ ( j = 0, n − 1)- ëèíåéíûé îïåðàòîð ïîðÿäêàËèíåéíàÿ çàäà÷à.p.- ïîâåðõíîñòü∃F(Ω) è H(Ω) â Ω∀ f (x) ∈ F(Ω) è ∀g j (x) ∈ G j (Γ) (j = 0, n − 1)1)Ëèíåéíûå íîðìèðîâàííûå ïðîñòðàíñòâà2)ËÍÏG0 (Γ), .
. . , Gn−1 (Γ)âèìååò åäèíñòâåííîå ðåøåíèåΓòàêèå, ÷òîu(t, x) ∈ H(Ω),è ñïðàâåäëèâà îöåíêàÊðàåâàÿ çàäà÷à (*)∥u∥H(Ω) 6 C· ∥ f ∥F(Ω) +n−1∑C j ∥g j ∥G j (Γ)j=0C, C j- óíèâåðñàëüíûå êîíñòàíòû. ýòîì ñëó÷àå ãîâîðÿò, ÷òî êðàåâàÿ çàäà÷à (*) ÿâëÿåòñÿ êîððåêòíîé â ñèñòåìå ïðîñòðàíñòâF(Ω), G0 (Γ), . . . , Gn−1 (Γ), H(Ω)21 çàäà÷å Êîøè áûëî u0 (x) ∈ C (.
. .); u1 (x) ∈ C (. . . );ðåøåíèå áûëîC2 (. . .)ïî íîðìåC. îäíîé ñèñòåìå ïðîñòðàíñòâ çàäà÷à ìîæåò áûòü êîððåêòíîé, à â äðóãîé - íåò.Ïðèìåð ÀäàìàðàÇàäà÷à Êîøè äëÿ óðàâíåíèÿ Ëàïëàñàuxxy) ∈ Ω ⊂ R2 + u yy = 0 (x,√ u = u0 (x) = e− n cos(nx) → 0y=0 u y = u1 (x) ≡ 0(ðàâíîìåðíî, è âñå ïðîèçâîäíûå òîæå)y=0Íåñëîæíî ïðîâåðèòü, ÷òî ðåøåíèÿìè áóäåòu(x, y) = e−Ðàññìîòðèì òî÷êó (x∗ , y∗ ); x∗ = 0, y∗ > 0, òîãäà:(√1 √1u(x∗ , y∗ ) = e− n cosh(ny∗ ) > e− n eny∗ = eny∗ 1 −22√ncos(nx)· cosh(ny))1√ → +∞, ïðè n → +∞y∗ nÒî åñòü íè â êàêîé ðàçóìíîé íîðìå ýòà çàäà÷à êîððåêòíîé íå áóäåò.Îáîáù¼ííîå ðåøåíèå çàäà÷è ÊîøèÄî ñèõ ïîð ìû ðàññìàòðèâàëè çàäà÷è Êîøè ñ ãëàäêèìè íà÷àëüíûìè äàííûìè.
À èíòåðåñíî áûëîáû îáîáùèòü íàø ðåçóëüòàò íà áîëåå îáùèé ñëó÷àé, íàïðèìåð êàê âåä¼ò ñåáÿ ãèòàðíàÿ ñòóíà, ïðèíà÷àëüíîé äåôîðìàöèè, îòïóùåííàÿ áåç íà÷àëüíîé ñêîðîñòè.Ïîïðîáóåì àïïðîêñèìèðîâàòü ôóíêöèÿìè êëàññà1)Îïðåäåëåíèå ÏðîñòðàíñòâîL2 ((−l, l))C2- ëèíåéíîå íîðìèðîâàííîå ïðîñòðàíñòâî ôóíêöèé√∫òåãðèðóåìûõ ïî Ðèìàíó( â íåñîáñòâåííîì ñìûñëå) è òàêèõ, ÷òî12∥u∥L2 ((−l,l)) =u(x),l−l∥u(x)∥2 dx < +∞èí-∫(u, v) =Ïóñòül2)Ïóñòül−lu(x)v(x)dx- ñêàëÿðíîå ïðîèçâåäåíèå.- êîíå÷íîå ÷èñëî.uk0 (x) ∈ C2 ([−l, l]);uk1 (x) ∈ C1 ([−l, l]) ku − a2 ukxx = 0, (t, x) ∈ Q uttk = uk (x), x ∈ [−l, l]0t=0 uk = uk (x), x ∈ [−l, l]t1u0(x)uk (t, x) ∈ C2 (Q)t=0xÄîêàçàòåëüñòâî íåïðåðûâíîñòè â çàìûêàíèè ïðîõîäèò àíàëîãè÷íî äîêàçàòåëüñòâó, êîòîðîå ìû ïðèâåëè ðàíåå.3) à) ÏóñòüC2 ([−l, l])u0 (x) ∈ C([−l, l])∃èòàêàÿ, ÷òî∥uk0 (x) − u0 (x)∥C([−l,l]) = max |uk0 (x) − u0 (x)| → 0x∈[−l,l]á) Ïóñòüu1 (x) ∈ L2 ([−l, l]); ∃∫∥uk1 (x)uk0 (x) ∈ïîñëåäîâàòåëüíîñòü− u1 (x)∥L2 ([−l,l]) =ïðèk→∞ïîñëåäîâàòåëüíîñòüuk1 (x) ∈ C1 ([−l, l])òàêàÿ, ÷òîl−l|uk1 (x) − u1 (x)|dx → 0ïðèk→∞u(t, x) ∈ C(Q) ÿâëâÿåòñÿ îáîáùåííûì (ñèëüíûì) ðåøåíèåì çàäà÷è Êîøè:Îïðåäåëåíèå: Ãîâîðÿò, ÷òîutt − a2 uxx = 0; (t, x) ∈ Q u = u (x) ∈ C([−l, l])0t=0 u = u (x) ∈ L ([−l, l])t12(∗)t=0kåñëè ∀u (x)0∈ C ([−l, l]);2uka (x)∈ C1 ([−l, l])òàêèõ, ÷òî∥uk0 (x) − u0 (x)∥C([−l,l]) → 0 ïðè k → ∞∥uk1 (x) − u1 (x)∥L2 ([−l,l]) → 0 ïðè k → ∞kkâûïîëíÿåòñÿ óñëîâèå |u (t, x) − u(t, x)|C(Q) = max |u(t, x) − u (t, x)| →(t,x)∈Q0 ïðèk→∞Äîêàæåì ñëåäóþùóþ òåîðåìó:Òåîðåìà 2.2:∀u0 (x) ∈ C([−l, l]); u1 (x) ∈ L2 ([−l, l]) ∃åäèíñòâåííîå îáîáù¼ííîå ðåøåíèåçàäà÷è Êîøè (*), è îíî ïðåäñòàâèìî ôîðìóëîé Äàëàìáåðà.Äîêàçàòåëüñòâî:∫x+at1)u1 (x) ∈ L2 ([−l, l]) ⇒ ∃∫x+at ∫u1 (y)dy6u1 (y)dyx−atx+at∫∀(t, x) ∈ Q√∫l|u1 (y)|dy 6√l|u1 (y)|· 1· dy 6u1 (y) dy·x−atx−at−l−l∫ x+atu0 (x + at) + u0 (x − at)1+u1 (y)dy ∈ C(Q)2)u(t, x) =22a x−at∫l2−l1· dy6 ∥u1 ∥L2 ([−l,l]) ·√2l k∫ x+at∫ x+at u0 (x + at) + uk0 (x − at)u0 (x + at) − u0 (x − at)11k|u (t, x) − u(t, x)| = +u (y)dy −+u1 (y)dy622a x−at 122a x−atk∫ x+at k k u0 (x + at) − u0 (x + at) u0 (x − at) − u0 (x − at) 1|uk1 (y) − u1 (y)|dy 66++ 2a22x−at6 ∥uk0 (y) − u0 (y)∥C([−l,l])()√1 11++ ∥uk1 (y) − u1 (y)∥L2 ([−l,l]) 2l → 02 22aïðèk→∞Ïîëó÷èëè ðàâíîìåðíóþ ñõîäèìîñòü.
Òî åñòü ôîðìóëà Äàëàìáåðà äåéñòâèòåëüíî äà¼ò îáîáù¼ííîåðåøåíèå çàäà÷è Êîøè. Áîëåå òîãî îíî áóäåò åäèíñòâåííûì, òàê êàê âñå ïîñëåäîâàòåëüíîñòè ñõîäÿòñÿêu(t, x)13Ñìåøàííàÿ çàäà÷à Êîøè äëÿ ïîëóáåñêîíå÷íîé ñòðóíû ñ 1 çàêðåïë¼ííûì êîíöîì.utt − a2 uxx = 0; u = u (x)0t=0 u = 0, t > 0t> 0, x > 0ut t=0 = u1 (x),x=0u0 (x) ∈ C ([0, +∞))u1 (x) ∈ C1 ([0, +∞))x>0(íà÷àëüíûå óñëîâèÿ)(∗)ãðàíè÷íûå(êðàåâûå óñëîâèÿ)2êëàññè÷åñêîå ðåøåíèåu(t, x) ∈ C1 (t > 0, x > 0) ∩ C2 (t > 0, x > 0)Îáùåå ðåøåíèå íàøåãî óðàâíåíèÿ:u(t, x) = f (x + at) + g(x − at){∫U1 (x) =0ux=0Ïîäñòàâèì äàííûå Êîøè:ut=0 = f (x) + g(x) = u0 (x), x > 0ut t=0 = a f ′ (x) − g′ (x) = ua (x), x > 0tx-at=0xu1 (ξ)dξ + C1f (x) = u0 (x) +21 g(x) = u0 (x) −2= f (at) + g(−at) = 01U1 (x)2a1U1 (x)2axx>0x+at=0t>0 øòðèõîâàííîé îáëàñòè ðåøåíèå îäíîçíà÷íî îïðåäåëåíî íà÷àëüíûìè óñëîâèÿìè.