Lektsii_zubova_1 (1181473), страница 3
Текст из файла (страница 3)
Èñïîëüçóÿ ãðàíè÷íûå óñëîâèÿ, íàéä¼ì ðåøåíèå â îñòàâøåéñÿ îáëàñòè.Ïóñòüf (x) =η = −at, η 6 0g(η) = − f (−η)11u0 (x) + U1 (x)22a11 g(x) = 2 u0 (x) − 2a U1 (x), x > 0g(x) = 11 g(x) = − u0 (−x) − U1 (−x), x < 022añëåäóåò èçg(η) = − f (−η)f (x) ∈ C2 ([0, +∞))g(x) ∈ C2 ([0, +∞))g(x) ∈ C2 ((−∞, 0])Ñîøü¼ì ðåøåíèÿ:g(+0) = g(−0) ′g(+0) = g′ (−0) g′′ (+0) = g′′ (−0)⇒ g(x)áóäåò∈ C2 ((−∞, ∞))1111u0 (+0) − U1 (+0) = − u0 (+0) − U1 (+0) ⇒ u0 (0) = 022a22a11112)g′ (+0) = g′ (−0) ⇒ u′0 (+0) − u1 (+0) = u′0 (+0) + u1 (+0) ⇒ u1 (0) = 022a22a11113)g′′ (+0) = g′′ (−0) ⇒ u′′(+0) − u′1 (+0) = − u′′(+0) − u′1 (+0) ⇒ u′′0 (0) = 02 02a2 02a1)g(+0) = g(−0) ⇒Ïðèìå÷àíèå: ðàçðûâ â íà÷àëüíûõ äàííûõ íà õàðàêòåðèñòèêå ãèïåðáîëè÷åñêîãî óðàâíåíèÿ ïðèâåä¼òê ðàçðûâó â ðåøåíèè âäîëü âñåé õàðàêòåðèñòèêè.∫ x+atu0 (x + at) + u0 (x − at)1+u1 (ξ)dξ22a x−atu(t, x) = ∫ x+atu0 (x + at) + u0 (x − at)1−u1 (ξ)dξ22a at−x14{{x + at > 0x − at > 0(∗∗)x + at > 0x − at 6 0Âîîáùå ãîâîðÿ, íàäî äîáàâèòüt<0t > 0,íî îêàçûâàòåñÿ ðåøåíèå ïðåäñòàâèìî â òàêîì æå âèäå è ïðè- "ìîæíî çàãëÿíóòü â ïðîøëîå"Äîêàæåì ñëåäóþùóþ òåîðåìó:Òåîðåìà 2.3 Ïóñòü â ñìåøàííîé çàäà÷å (*) ôóíêöèè u0 (x) è u1 (x) óäîâëåòâîðÿþò:u0 (x) ∈ C2 ([0, +∞)); u1 (x) ∈ C1 ([0, +∞))′′á) óñëîâèþ ñîãëàñîâàííîñòè: u0 (0) = u1 (0) = u (0) = 002Òîãäà ñìåøàííàÿ çàäà÷à (*) èìååò åäèíñòâåííîå ðåøåíèå(êëàññè÷åñêîå) u(t, x) ∈ C (tà) óñëîâèþ ãëàäêîñòè:> 0, x > 0)è îíîïðåäñòàâèìî ôîðìóëîé (**)Ìåòîä ïðîäîëæåíèéÏîïðîáóåì ñâåñòè çàäà÷ó (*) ê çàäà÷å Êîøè{ãäå â êà÷åñòâåû0û0 (x) =è{û1âûáåðåì:{u0 (x), x > 0−u0 (−x), x < 0Ïî ôîðìóëå Äàëàìáåðà èìååì:û(t, x) =utt − a2 uxx = 0, t> 0, x ∈ R1ut=0 = û0 (x); ut t=0 = û1 (x), x ∈ R1û0 (x + at)û0 (x − at)1+22a∫∈ C (R )2û1 (x) =1u1 (x), x > 0−u1 (−x), x < 0∈ C2 (R1 )x+atû1 (ξ)dξx−atx − at < 0, x + at > 0∫ x+at∫ 0∫ x+atu0 (x + at) − u0 (at − x) 1u0 (x + at) − u0 (at − x) 11û(t, x) =+u1 (ξ)dξ−u1 (−ξ)dξ =+u1 (ξ)dξ22a 02a at−x22a at−xÒàêèì îáðàçîì, ìû ñâåëè ñìåøàííóþ çàäà÷ó ê çàäà÷å Êîøè, è òåì ñàìûì äîêàçàëè òåîðåìó.Ïðèìåð (îòðàæåíèå âîëíû îò çàêðåïë¼ííîãî êîíöà) Âîñïîëüçóåìñÿ ìåòîäîì ïðîäîëæåíèé.
Äëÿ ýòîãî ïîñòðîèì ïðîäîëæåíèå íà÷àëüíîãî âîçìóùåíèÿ, ñèììåòðè÷íîå îòíîñèòåëüíî (t,x) = (0,0). Êàæäàÿèç íà÷àëüíûõ âîëí ñîñòîò èç äâóõ ñ âäâîå ìåíüøåé àìïëèòóäîé, êîòîðûå ïîáåãóò â ðàçíûå ñòîðîíû.txtxtx15Çàäà÷à Êîøè äëÿ âîëíîâîãî óðàâíåíèÿ âR2,3Èíòåãðàëû, çàâèñÿùèå îò ïàðàìåòðîâf (x, y), x ∈ Ωx ⊂ Rn , y ∈ Ω y ⊂ RnÒåîðåìà: Ïóñòü∫1)J(y) =ΩxΩx × Ω y .Òîãäà:f (x, y)dx ∈ C(Ω y )∂f(x, y) ∈ C(Ωx × Ω y ),∂yk ∫∂J(y)∂ f (x, y)=dx∂yk∂ykΩx2) Åñëèïðè÷¼ì:íåïðåðûâíà âòîJ(y)èìååò íåïðåðûâíûå ïðîèçâîäíûå∂J, ∀y ∈ Ω y ,∂ykÐàññìîòðèì ôóíêöèþ, çàâèñÿùóþ îò ïàðàìåòðà:1u g (t, x, τ) =aπa2 t"g(ξ, τ)dSξ ,ãäå:|ξ−x|=ata > 0, t > 0 x = (x1 , x2 , x3 ) ∈ R3 , τ > 0, ξ = (ξ1 , ξ2 , ξ3 )Ëåììà 3.1 Ïóñòü:1)g(ξ, τ) ∈ C({ξ ∈ R3 , τ > 0})2)Dαξ g(ξ, τ) ∈ C({ξ ∈ R3 , τ > 0}) ∀α, |α| 6 pòîãäà:α1)Dt,x u g (t, x, τ)∈ C({t > 0 x ∈ R3 , τ > 0}) ∀α, |α| 6 p2) lim u g (t, x, τ)t→+03)Åñëèãäåp > 1,=0limòî∂u g (t, x, τ)t→+0C(Ω) : C(Ω),∂t= g(x, τ),äîïóñêàþùèå íåïðåðûâíîå ïðîäîëæåíèå íà ãðàíèöó.Äîêàçàòåëüñòâî:1) Çàôèêñèðóåì|ξ − x| = at; |η| = 1;(t, x)ïóñòüξ−x⇒ ξ = x + atηatη=dSξ = a2 t2 dSη"g(x + atη, τ)dSη = t· J g (t, x, τ),a 2 t24πa2 t"|η|=11J g (t, x, τ) =g(x + atη, τ)dSη4πu g (t, x, τ) =ãäå:|η|=1g(ξ, τ) ∈ C({ξ ∈ R3 , τ > 0})g̃(t, x, η, τ) = g(x + atη, τ) ∈ C({t > 0, x ∈ R3 , τ > 0, |η| = 1}),J g (t, x, τ) ∈ C({t > 0, x ∈ R3 , τ > 0}),êàê ñóïåðïîçèöèÿ íåïðåðûâíûõ.⇒ïî òåîðåìå, ñôîðìóëèðîâàííîé â íà÷àëå ïàðàãðàôà.Dαt,x J g (t, x, τ) ∈ C({t > 0, x ∈ R3 , τ > 0}) ∀α, |α| 6 pïî òîé æå òåîðåìå.2)lim u g (t, x, τ) = lim[t· J g (t, x, τ)] = lim t· lim J g (t, x, τ) = 0,t→0t→0t→0t→0òàê êàê ïîñëåäíèé ïðåäåë ∃ ïðè ôèêñèðîâàííûõ x, τ.
Ìîæíî ïðîäîëæèòü íóë¼ì â 0.3)limt→01g(x, τ)4π∂u g (t, x, τ)"∂t"[]∂J g∂1= limt· J g (t, x, τ) = lim J g (t, x, τ) + lim t·= J g (0, x, τ) + 0· C =g(x, τ)dSτ =t→0 ∂tt→0t→04π∂tdSη = g(x, τ)|η|=1Äîêàçàòåëüñòâî çàâåðøåíî.|η|=116{3utt − a2 (ux1 x1 + ux2 x2 + ux2 x2 ) = 0, t > 0, x ∈ Ru t=0 = 0; ut t=0 = u1 (x), x ∈ R3Òåîðåìà 3.1 Ïóñòü â çàäà÷å Êîøè14πa2 tu(t, x) =Òîãäà"u1 (ξ)dSξ ,(∗) − ïðîñòàÿçàäà÷à Êîøèu1 (x) ∈ C(R3 )ïðè÷¼ì:|x−ξ|=at1)u(t, x) ∈ C2 ({t > 0, x ∈ R3 })2)u(t, x)- êëàññè÷åñêîå ðåøåíèå çàäà÷è Êîøè (*)Ýòî ôîðìóëà Ïóàññîíà - Êèðõãîôà, îòêðûòàÿ â 1818 ãîäó.Îíà ÿâëÿåòñÿ õîðîøèì êàíäèäàòîì íà êëàññè÷åñêîå ðåøåíèå, òàê êàê ãðàíè÷íûå óñëîâèÿ âûïîëíåíû â ñèëó ëåììû" 3.1u(t, x) =t4πu1 (x + atη)dSη ∈ C2 ({t > 0, x ∈ R3 })|η|=1Äèôôåðåíöèðóåì ïî∆x u(t, x) =t4π1ut (t, x) =4πt, x:"|η|=1"|η|=1n∆ξ u1 (x + atη)dSη| {z }atξtu1 (x + atη)dSη +4π" ∑3∂u1(x + atη)· ηk · a· dSη∂ξkx|η|=1 k=1ξk − xkξk − xk−n - âåêòîð íîðìàëè ê ñôåðå ⇒== ηk , ãäå →|ξ − x|at" ∑"3∂u1 (ξ)∂u1 (ξ)u(t, x)u(t, x)11ut (t, x) =+nk (ξ)Sξ =+−n Sξ =t4πat∂ξkt4πat∂→k=1nk =|ξ−x|=at|ξ−x|=at1I+4πat 4πatÈñïîëüçóåì ôîðìóëó Îñòðîãðàäñêîãî-Ãàóññà:$$"∆ξ u1 (ξ)dξ =|x−ξ|<at|x−ξ|<at∫at$I="div(∇u1 (ξ))dξ =∆ξ u1 (ξ)dξ =|x−ξ|<at(n(ξ), ∇u1 (ξ))dSξ =|x−ξ|=at"∆ξ u1 (ξ)dSξ ⇒ It = adρ|x−ξ|=ρ0|ξ−x|=at"∂u1 (ξ)−n dSξ ⇒∂→∆ξ u1 (ξ)dSξ|x−ξ|=at[]()ut uuI1 uIIt∂ u(t, x)IItIIt=− 2−+− 2−=+=utt (t, x) =++22t4πatt4πatt t 4πat4πat 4πat∂tt4πatt4πatÎòñþäà:autt − a ∆x u =4πat"2=a4πat"|x−ξ|=ata2 t∆ξ u1 (ξ)dSξ −4π∆ξ u1 (ξ)dSξ −|x−ξ|=ata2 t4πÏîëó÷àåì äîïîëíèòåëüíóþ èíôîðìàöèÿ, ÷òî{""∆ξ u1 (x + atη)dSη =|η|=1∆ξ u1 (x + atη)dSξ|x−ξ|=atutt = 0ïðè17)1=0a2 t2t=0utt − a2 (ux1 x1 + ux2 x2 + ux2 x2 ) = 0, t > 0, x ∈ R3ut=0 = u0 (x); ut t=0 = 0, x ∈ R3u0 (x) ∈ C3 (R3 )((∗∗){3vtt − a2 (vx1 x1 + vx2 x2 + vx2 x2 ) = 0, t > 0, x ∈ Rv t=0 = 0; vt t=0 = u0 (x), x ∈ R3"1v(t, x) =u0 (ξ)dSξ ∈ C3 ({t > 0, x ∈ R3 })4πa2 t(∗) − ðåøåíèåêëàññàC3|x−ξ|=atÄîêàæåì, ÷òî ðåøåíèåì (∗∗) áóäåò u(t, x) = vt (t, x)vtt − a2 ∆x v = 00 = vttt − a2 (∆x v)t = vttt − a2 ∆x (vt ) = utt − a2 ∆x u = 0∈ C2 ({t > 0, x ∈ R3 })ut=0 = vt t=0 = u0 (x)ut t=0 = vtt t=0 = 0Òî åñòü, ìû òîëüêî ÷òî äîêàçàëè ñëåäóþùóþ òåîðåìó:Òåîðåìà 3.2 Ôóíêöèÿ u(t,x):ãäåu0 (x) ∈ C3 (R3 )u(t, x) ="[]1∂u(ξ)dS, t > 0, x ∈ R3 ,0ξ∂t 4πa2 t|x−ξ|=atÿâëÿåòñÿ êëàññè÷åñêèì ðåøåíèåì çàäà÷å Êîøè{(∗∗)3utt − a2 (ux1 x1 + ux2 x2 + ux2 x2 ) = f (t, x), t > 0, x ∈ Ru t=0 = 0; ut t=0 = 0, x ∈ R3(∗ ∗ ∗)Äëÿ ðåøåíèÿ ýòîé çàäà÷è Êîøè, èñïîëüçóåì ìåòîä ÄþàìåëÿÐàññìîòðèì ñëåäóþùåå ñåìåéñòâî çàäà÷:{Wtt (t, x, τ) − a2 ∆ x W(t, x, τ) = 0, t > τW t=τ = 0; Wt t=τ = f (τ, x), x ∈ R3 ;τÐåøåíèÿ äëÿ êàæäîãî1W(x, t, τ) =4πa2 (t− τ)f−êëàññàC2ïîxñëåäóåò èç ôîðìóëû Ïóàññîíà-Êèðõãîôà:"f (τ, ξ)dSξ|ξ−x|=a(t−τ)W(t, x, τ) ∈ C2 (t, τ, x)"- íåïðåðûâíî1f (τ, ξ)dSξW f (x, t, τ) =4πa2 täèôôåðåíöèðóåìà|ξ−x|=at3α∀α, |α| 6 2Ïóñòü Dx f (t, x) ∈ C({t > 0, x ∈ R })Òîëüêî ïðè òàêîì ïðåäïîëîæåíèè, ìû ñìîæåì êîððåêòíî ðåøèòü çàäà÷ó.Ïî ëåììå 3.1 èìååì:Dαt,x W f (t, x, τ) ∈ C({t >0, x ∈ R3 , τ > 0}) ∀α, |α| 6 2W(t, x, τ) = W f (t − τ, x, τ) ⇒ Dαt,x W(t, x, τ) ∈ C({t > τ, x ∈ R3 , τ > 0}) ∀α, |α| 6 2Îïðåäåëèì:∫tu(t, x) =W(t, x, τ)dτÓòâåðæäàåòñÿ, ÷òî å¼ ìîæíî âûáðàòü â êà÷åñòâå ðåøåíèÿ (***)0α1)Dt,x u(t, x)∈ C({t > 0, x ∈ R3 }) ∀α, |α| 6 2∫ t2)∆x u(t, x) =∆x W(t, x, τ)dτ0∫ t3)ut (t, x) = W(t, x, t) +Wt (t, x, τ)dτ, íî W t=τ = 0: ïåðâûé ÷ëåí = 0∫ t 0∫ tutt (t, x) = Wt (t, x, t) +Wtt (t, x, τ)dτ = f (t, x) +a2 ∆x W(t, x, τ)dτ = f (t, x) + a2 ∆x u(t, x)o0Òî åñòü ýòî äåéñòâèòåëüíî ðåøåíèå.
Ïðîâåðèì íà÷àëüíûå äàííûå:∫ 0ut=0 =ut t=0 =∫0W(t, x, τ)dτ = 00Wt (t, x, τ)dτ = 00Òî åñòü ýòî äåéñòâèòåëüíî êëàññè÷åñêîå ðåøåíèå çàäà÷è Êîøè (***).Åãî ìîæíî èíòåðïðåòèðîâàòü êàê íàáîð òî÷å÷íûõ èñòî÷íèêîâ, êîòîðûå ïîòîì ñóììèðóþòñÿ.18Ñôîðìóëèðóåì òîëüêî ÷òî äîêàçàííûé ôàêò â òåîðåìó:Dαx f (t, x) ∈ C({t > 0, x ∈ R3 }) ∀α, |α| 6 2)"1f (τ, ξ)dSξ dτ4πa2 (t − τ)Òåîðåìà 3.3 Ïóñòü∫ t(Òîãäàu(t, x) =01)|ξ−x|=a(t−τ)Dαt,x u(t, x) ∈ C({t > 0, x ∈ R3 }) ∀α, |α| 6 22) ßâëÿåòñÿ êëàññè÷åñêèì ðåøåíèå çàäà÷è Êîøè (***){3utt − a2 ∆x u = f (t, x), t > 0, x ∈ Ru t=0 = u0 (x); ut t=0 = u1 (x), x ∈ R3 ;(∗ ∗ ∗∗)Òåîðåìà 3.4 Ïóñòü â çàäà÷å Êîøè (****):∈ C3 (R3 )23á)u1 (x) ∈ C (R3αâ) Dt,x u(t, x) ∈ C({t > 0, x ∈ R }) ∀α, |α| 6 2à)u0 (x)Òîãäà ôóíêöèÿ:()[]""$ f t − |ξ−x| , ξa∂111u(t, x) =u0 (ξ)dSξ +u1 (ξ)dSξ +dξ ∈ C2 (R3 )|ξ − x|∂t 4πa2 t4πa2 t4πa2|ξ−x|=at|ξ−x|=at|ξ−x|<at-ÿâëÿåòñÿ êëàññè÷åñêèì ðåøåíèåì çàäà÷è Êîøè (****)Äîêàæåì.
Èñïîëüçóåì ïðèíöèï ñóïåðïîçèöèè.{u0tt − a2 ∆x u0 = 0 u0 t=0 = u0 (x); u0t t=0 = 0{u1tt − a2 ∆x 10 = 0u1 t=0 = 0; u1t t=0 = u1 (x){u2tt − a2 ∆x u2 = f (t, x)u2 t=0 = 0; u2t t=0 = 0u(t, x) = u0 (t, x) + u1 (t, x) + u2 (t, x)Íàñ÷¼ò åäèíñòâåííîñòè ïîêà íè÷åãî ñêàçàòü íå ìîæåì. Îñòàëîñü ïðèâåñòè(ïóñòüρdρa(t − τ) = ρ; τ = t − ; dτ = − )aa∫ t("12u (t, x) =4πa2 (t − τ)0)=14πa2∫0at["|ξ−x|=ρ0f (τ, ξ)dSξ dτ = −at|ξ−x|=a(t−τ)(f t−∫|ξ−x|a ,ξ)|ξ − x|]dSξ dρ =14πa2Ýòî òàê íàçûâàåìûé çàïàçäûâàþùèé ïîòåíöèàë.Ïðèíöèï Ãþéãåíñàf(t,x)=0t0 = Ra0x19dρ4πa2 ρ"|ξ−x|=ρ($ f t−|ξ−x|<atu2 (x, t)ê íóæíîìó âèäó:(ρ )f t − , ξ dSξ =a|ξ−x|a ,ξ|ξ − x|)dξÏóñòü ãäå-òî ïðîèçîø¼ë âçðûâ (òî åñòü f = 0). Ïðîñëåäèì çà ðàñïðîñòðàíåíèåì âîëíû.