Диссертация (1173445), страница 26
Текст из файла (страница 26)
Lenze [et al.] //InformationWissenschaft & Praxis, 2017. Т. 68. №. 1. P. 67–74. [Электронный ресурс]. URL:http://www.melaniesiegel.de/publications/2017_iwp_Siegel.pdf,(датаобращения:15.12.2019).75.Baccianella S., Esuli A., Sebastiani F. Sentiwordnet 3.0: an enhancedlexical resource for sentiment analysis and opinion mining //Lrec, 2010. Т. 10. №. 2010.P.2200–2204.[Электронныйресурс].URL:http://lrec-conf.org/proceedings/lrec2010/pdf/769_Paper.pdf, (дата обращения: 15.12.2019).76.Badlani R., Asnani N., Rai M. Disambiguating Sentiment: An Ensemble ofHumour, Sarcasm, and Hate Speech Features for Sentiment Classification //W-NUT1442019,2019.P.337–345.[Электронныйhttps://www.aclweb.org/anthology/D19-55.pdf#page=357,ресурс].(датаURL:обращения:15.12.2019).77.Beltagy I., Erk K., Mooney R.
Probabilistic Soft Logic for SemanticTextual Similarity // Proceedings of the 52nd Annual Meeting of the Association forComputational Linguistics (Volume 1: Long Papers), 2014. P. 1210–1219.[Электронный ресурс]. URL: https://www.aclweb.org/anthology/P14-1114.pdf, (датаобращения: 15.12.2019).78.Bhatia P., Ji Y., Eisenstein J. Better document-level sentiment analysisfrom rst discourse parsing //arXiv preprint arXiv:1509.01599, 2015. [Электронныйресурс].
URL: https://arxiv.org/pdf/1509.01599.pdf, (дата обращения: 15.12.2019).79.Blinov P., Kotelnikov E. V. Semantic similarity for aspect-based sentimentanalysis //Russian Digital Libraries Journal, 2015. Т. 18. №. 3-4. P. 120–137.[Электронныйресурс].URL:https://pdfs.semanticscholar.org/3333/6037b83d0fad4290e4199a9f9020a03043ce.pdf,(дата обращения: 15.12.2019).80.Boland K., Wira-Alam A., Messerschmidt R. Creating an annotated corpusfor sentiment analysis of german product reviews. Köln: Leibniz-Institut fürSozialwissenschaften, 2013.81.Can E.
F., Ezen-Can A., Can F. Multilingual sentiment analysis: An rnn-based framework for limited data //arXiv preprint arXiv:1806.04511, 2018.[Электронный ресурс]. URL: https://arxiv.org/pdf/1806.04511.pdf, (дата обращения:15.12.2019).82.Chen C. C., Huang H. H., Chen H.
H. NTUSD-Fin: a market sentimentdictionary for financial social media data applications //Proceedings of the 1st FinancialNarrative Processing Workshop (FNP 2018), 2018. [Электронный ресурс]. URL:http://lrec-conf.org/workshops/lrec2018/W27/pdf/1_W27.pdf,15.12.2019).(датаобращения:14583.Chen, Y., Skiena, S. Building Sentiment Lexicons for All MajorLanguages. In ACL (2), 2014. P. 383–389. [Электронный ресурс]. URL:https://www.aclweb.org/anthology/P14-2063.pdf, (дата обращения: 15.12.2019).84.Chetviorkin I., Loukachevitch N. Evaluating sentiment analysis systems inRussian // Proceedings of the 4th biennial international workshop on Balto-Slavicnatural language processing, 2013.
P. 12–17. [Электронный ресурс]. URL:https://www.aclweb.org/anthology/W13-2403.pdf, (дата обращения: 15.12.2019).85.Chiranjeevi P., Santosh D. T., Vishnuvardhan B. Survey on SentimentAnalysis Methods for Reputation Evaluation //Cognitive Informatics and SoftComputing. Springer, Singapore, 2019.
P. 53–66. [Электронный ресурс]. URL:https://www.researchgate.net/profile/Teja_Santosh_Dandibhotla/publication/326983873_Survey_on_Sentiment_Analysis_Methods_for_Reputation_Evaluation/links/5b701ce1a6fdcc87df732e30/Survey-on-Sentiment-Analysis-Methods-for-ReputationEvaluation.pdf, (дата обращения: 15.12.2019).86.Choi Y., Wiebe J., Mihalcea R. Coarse-grained +/- Effect Word SenseDisambiguation for Implicit Sentiment Analysis // IEEE Trans. Affective Computing,2017.Vol.8.№4.P.471–479.[Электронныйhttp://web.eecs.umich.edu/~mihalcea/papers/choi.ieeetac17.pdf,ресурс].(датаURL:обращения:15.12.2019).87.Dave A.
D., Desai N. P. A comprehensive study of classificationtechniques for sarcasm detection on textual data //2016 International Conference onElectrical, Electronics, and Optimization Techniques (ICEEOT). IEEE, 2016. P. 1985–[Электронный1991.ресурс].URL:https://ieeexplore.ieee.org/abstract/document/7755036, (дата обращения: 15.12.2019).88.Dave K., Lawrence S., Pennock D. M.
Mining the peanut gallery: Opinionextraction and semantic classification of product reviews //Proceedings of the 12thinternational conference on World Wide Web. ACM, 2003. P. 519–528. [Электронныйресурс].URL:http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.13.2424&rep=rep1&type=pdf, (дата обращения: 15.12.2019).14689.Deep unordered composition rivals syntactic methods for text classification/ M. Iyyer, V. Manjunatha, J. Boyd-Graber, H.
Daumé III //Proceedings of the 53rdAnnual Meeting of the Association for Computational Linguistics and the 7thInternational Joint Conference on Natural Language Processing (Volume 1: LongPapers),2015.Т.1.P.1681–1691.[Электронныйресурс].URL:https://www.aclweb.org/anthology/P15-1162.pdf, (дата обращения: 15.12.2019).90.Deng L., Choi Y., Wiebe J. Benefactive/malefactive event and writerattitude annotation //Proceedings of the 51st Annual Meeting of the Association forComputational Linguistics (Volume 2: Short Papers), 2013.
P. 120–125. [Электронныйресурс]. URL: https://www.aclweb.org/anthology/P13-2022.pdf, (дата обращения:15.12.2019).91.Deng L., Wiebe J. Joint prediction for entity/event-level sentiment analysisusing probabilistic soft logic models //Proceedings of the 2015 Conference on EmpiricalMethods in Natural Language Processing, 2015. P. 179–189. [Электронный ресурс].URL:https://www.aclweb.org/anthology/D15-1018.pdf,(датаобращения:15.12.2019).92.Deng L., Wiebe J. MPQA 3.0: An Entity/Event-Level Sentiment Corpus //Human Language Technologies: The 2015 Annual Conference of the North AmericanChapteroftheACL,2015.P.1323–1328.[Электронныйресурс].URL:https://www.aclweb.org/anthology/N15-1146.pdf, (дата обращения: 15.12.2019).93.Deng L., Wiebe J.
Sentiment propagation via implicature constraints//Proceedings of the 14th Conference of the European Chapter of the Association forComputational Linguistics, 2014. P. 377–385. [Электронный ресурс]. URL:https://www.aclweb.org/anthology/E14-1040.pdf, (дата обращения: 15.12.2019).94.Document-level Sentiment Inference with Social, Faction, and DiscourseContext / E. Choi, H. Rashkin, L. Zettlemoyer, Y.
Choi // Proceedings of the 54thAnnual Meeting of the Association for Computational Linguistics. 2016. P. 333–343.[Электронный ресурс]. URL: https://www.aclweb.org/anthology/P16-1032.pdf, (датаобращения: 15.12.2019).14795.Duric A., Song F. Feature selection for sentiment analysis based on contentand syntax models // Decision support systems, 2012. Т. 53. №. 4. P.
704–711.[Электронный ресурс]. URL: https://www.aclweb.org/anthology/W11-1712.pdf, (датаобращения: 15.12.2019).96.Effective Sentiment Analysis of Chinese Online Reviews with Syntax Treeand Linguistics Heuristics / C. Cai, Q. Meng, J. Ji, Z. Wang //International Journal ofAdvancements in Computing Technology, 2013.
Т. 5. №. 1. P. 8–19. [Электронныйресурс].URL:https://onlinelibrary.wiley.com/doi/abs/10.1002/asi.21206,(датаобращения: 15.12.2019).97.Elhadad M. K., Li K. F., Gebali F. Sentiment Analysis of Arabic andEnglish Tweets //Workshops of the International Conference on Advanced InformationNetworking and Applications.
Springer, Cham, 2019. P. 334–348. [Электронныйресурс]. URL: https://link.springer.com/chapter/10.1007/978-3-030-15035-8_32, (датаобращения: 15.12.2019).98.Entity Based sentiment analysis using syntax patterns and convolutionalneural network / I.A. Karpov, M.V. Kozhevnikov, V.I. Kazorin, N.R. Nemov//Dialogue,2016.Т.2.[Электронныйресурс].URL:http://www.dialog-21.ru/media/3767/karpov.pdf, (дата обращения: 15.12.2019).99.Filatova E. Sarcasm detection using sentiment flow shifts //The ThirtiethInternational Flairs Conference, 2017. P.
262–269. [Электронный ресурс]. URL:https://www.aaai.org/ocs/index.php/FLAIRS/FLAIRS17/paper/viewPDFInterstitial/15480/14943, (дата обращения: 15.12.2019).100. Gamon M. Sentiment classification on customer feedback data: noisy data,large feature vectors, and the role of linguistic analysis // Proceedings of the 20thinternational conference on Computational Linguistics. Association for ComputationalLinguistics,2004.[Электронныйресурс].URL:https://www.aclweb.org/anthology/C04-1121.pdf, (дата обращения: 15.12.2019).101. Generating a gold standard for a Swedish sentiment lexicon / J.
Rouces, N.Tahmasebi, L. Borin, S.R. Eide //Proceedings of the Eleventh International Conferenceon Language Resources and Evaluation (LREC-2018), 2018. P. 2689–2694.148[Электронный ресурс]. URL: https://www.aclweb.org/anthology/L18-1426.pdf, (датаобращения: 15.12.2019).102. Ghiassi M., Skinner J., Zimbra D. Twitter brand sentiment analysis: Ahybrid system using n-gram analysis and dynamic artificial neural network //ExpertSystems with applications, 2013.
Т. 40. №. 16. P. 6266–6282. [Электронный ресурс].URL: https://www.sciencedirect.com/science/article/abs/pii/S0957417413003552, (датаобращения: 15.12.2019).103. Hangya V., Szántó Z., Farkas R. Latent syntactic structure-based sentimentanalysis //2017 2nd IEEE International Conference on Computational Intelligence andApplications (ICCIA). IEEE, 2017. P. 248–254. [Электронный ресурс]. URL:http://real.mtak.hu/64698/1/paper-iccai.pdf, (дата обращения: 15.12.2019).104. Hatzivassiloglou V., McKeown K.