Диссертация (1173445), страница 28
Текст из файла (страница 28)
[Электронныйресурс]. URL: https://www.aclweb.org/anthology/D13-1170.pdf, (дата обращения:15.12.2019).136. Rusnachenko N., Loukachevitch N. Using convolutional neural networksfor sentiment attitude extraction from analytical texts //EPiC Series in Language andLinguistics,2019.Т.4.P.1–10.[Электронныйресурс].URL:https://mail.easychair.org/publications/download/pQrC, (дата обращения: 15.12.2019).137.
Rusnachenko N., Loukachevitch N.V. Extracting Sentiment Attitudes fromAnalytical Texts via Piecewise Convolutional Neural Network //DAMDID/RCDL,2018.P.270–276.[Электронныйресурс].URL:154https://pdfs.semanticscholar.org/711f/5d4e622c4055508fed8d27c4fe50887a1aa4.pdf,(дата обращения: 15.12.2019).138. Saif H., He Y., Alani H. Semantic sentiment analysis of twitter//International semantic web conference.
Springer, Berlin, Heidelberg, 2012. P. 508–524. [Электронный ресурс]. URL: https://link.springer.com/content/pdf/10.1007/9783-642-35176-1_32.pdf, (дата обращения: 15.12.2019).139. Saura J. R., Palos-Sanchez P., Grilo A. Detecting indicators for startupbusiness success: Sentiment analysis using text data mining //Sustainability, 2019. Т.11.№.3.[Электронныйресурс].URL:https://www.mdpi.com/2071-1050/11/3/917/pdf, (дата обращения: 15.12.2019).140. Scheible С., Schutze H. Sentiment Relevance // Proceedings of the 51stAnnual Meeting of the Association for Computational Linguistics.
Sofia, 2013. P. 954–963. [Электронный ресурс]. URL: https://www.aclweb.org/anthology/P13-1094.pdf,(дата обращения: 15.12.2019).141. SenticNet 4: A semantic resource for sentiment analysis based onconceptual primitives / E. Cambria, S. Poria, R. Bajpai, B. Schuller // Proceedings ofCOLING 2016, the 26th international conference on computational linguistics:Technicalpapers,2016.P.2666–2677.[Электронныйресурс].URL:https://www.aclweb.org/anthology/C16-1251.pdf, (дата обращения: 15.12.2019).142. Sentiment analysis is a big suitcase / E. Cambria, S.
Poria, A. Gelbukh, M.Thelwall //IEEE Intelligent Systems, 2017. Т. 32. №. 6. P. 74–80. [Электронныйресурс].URL:https://www.sentic.net/sentiment-analysis-suitcase.pdf,(датаобращения: 15.12.2019).143. Sentiment analysis using dependency trees and named-entities / U.Yasavur, J. Travieso, C. Lisetti, N.D. Rishe //The Twenty-Seventh International FlairsConference,2014.P.134–139.[Электронныйресурс].URL:https://www.aaai.org/ocs/index.php/FLAIRS/FLAIRS14/paper/viewFile/7869/7837,(дата обращения: 15.12.2019).144.
Sindhwani V., Melville P. Document-word co-regularization for semisupervised sentiment analysis //2008 Eighth IEEE International Conference on Data155Mining. IEEE, 2008. P. 1025–1030. [Электронный ресурс]. URL: http://www.premmelville.com/publications/sentiment-icdm08-extended.pdf,(датаобращения:15.12.2019).145.
S-Sense: A sentiment analysis framework for social media sensing / C.Haruechaiyasak, A. Kongthon, P. Palingoon, K. Trakultaweekoon //Proceedings of theIJCNLP 2013 Workshop on Natural Language Processing for Social Media(SocialNLP),2013.P.6–13.[Электронныйресурс].URL:https://www.aclweb.org/anthology/W13-4202.pdf, (дата обращения: 15.12.2019).146. Stone P.
J., Dunphy D. C., Smith M. S. The general inquirer: A computerapproach to content analysis. Cambridge: The MIT Press, 1966.147. Stoyanov V., Cardie C., Wiebe J. Multi-Perspective Question Answeringusing he OpQA corpus // Proceedings of the Human Language TechnologiesConference,2005.P.923–930.[Электронныйресурс].URL:https://www.aclweb.org/anthology/H05-1116.pdf, (дата обращения: 15.12.2019).148.
Tausczik Y. R., Pennebaker J. W. The psychological meaning of words:LIWC and computerized text analysis methods //Journal of language and socialpsychology, 2010. Т. 29. №. 1. P. 24–54. [Электронный ресурс]. URL:https://www.academia.edu/download/31106320/LIWC-REVIEW-2010.pdf,(датаобращения: 15.12.2019).149. Thet T. T., Na J. C., Khoo C. S. G. Aspect-based sentiment analysis ofmovie reviews on discussion boards //Journal of information science, 2010. Т. 36. №.
6.P.823–848.[Электронныйресурс].URL:http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.895.7678&rep=rep1&type=pdf, (дата обращения: 15.12.2019).150. Titov I., McDonald R.T. A Joint Model of Text and Aspect Ratings forSentiment Summarisation // ACL, 2008. P. 308–316. [Электронный ресурс]. URL:https://www.aclweb.org/anthology/P08-1036.pdf, (дата обращения: 15.12.2019).151.
Tsur O., Davidov D., Rappoport A. A Great Catchy Name: SemiSupervised Recognition of Sarcastic Sentences in Online Product Reviews // AAAIConference on Artificial Intelligence. 2010. P.162–169. [Электронный ресурс]. URL:156https://www.aaai.org/ocs/index.php/ICWSM/ICWSM10/paper/download/1495/1851,(дата обращения: 15.12.2019).152.
Turney P. D. Thumbs up or thumbs down?: semantic orientation applied tounsupervised classification of reviews //Proceedings of the 40th annual meeting onassociation for computational linguistics. Association for Computational Linguistics,2002.P.417–424.[Электронныйресурс].URL:https://arxiv.org/ftp/cs/papers/0212/0212032.pdf, (дата обращения: 15.12.2019).153. Vanmassenhove E., Cabral J.
P., Haider F. Prediction of Emotions fromText using Sentiment Analysis for Expressive Speech Synthesis //SSW, 2016. P. 21–26.[Электронныйресурс].URL:https://www.researchgate.net/profile/Fasih_Haider/publication/305827107_Prediction_of_Emotions_from_Text_using_Sentiment_Analysis_for_Expressive_Speech_Synthesis/links/5a37c08ba6fdccdd41fdb750/Prediction-of-Emotions-from-Text-usingSentiment-Analysis-for-Expressive-Speech-Synthesis.pdf,(датаобращения:15.12.2019).154. Wang X., Jiang W., Luo Z. Combination of convolutional and recurrentneural network for sentiment analysis of short texts //Proceedings of COLING 2016, the26th international conference on computational linguistics: Technical papers, 2016.
P.2428–2437. [Электронный ресурс]. URL: https://www.aclweb.org/anthology/C161229.pdf, (дата обращения: 15.12.2019).155. Wiebe J. Learning subjective adjectives from corpora // Aaai/iaai, 2000. Т.20. [Электронный ресурс]. URL: https://www.aaai.org/Papers/AAAI/2000/AAAI00113.pdf, (дата обращения: 15.12.2019).156. Wiebe J.
M. Tracking point of view in narrative //ComputationalLinguistics, 1994. Т. 20. №. 2. P. 233–287. [Электронный ресурс]. URL:https://arxiv.org/pdf/cmp-lg/9407019, (дата обращения: 15.12.2019).157. Wiebe J. M., Bruce R. F., O’Hara T. P. Development and use of a goldstandard data set for subjectivity classifications //Proceedings of the 37th annualmeeting of the Association for Computational Linguistics, 1999.
P. 246–253.157[Электронный ресурс]. URL: https://www.aclweb.org/anthology/P99-1032.pdf, (датаобращения: 15.12.2019).158. Wiebe J., Wilson T., Cardie C. Annotating expressions of opinions andemotions in language // Language Resources and Evaluation, 2005. volume 39, № 2-3,P.165–210.[Электронныйресурс].URL:(датаобращения:https://link.springer.com/article/10.1007/s10579-005-7880-9,15.12.2019).159. Wilson T., Wiebe J., Hoffmann P. Recognizing contextual polarity inphrase-level sentiment analysis //Proceedings of Human Language TechnologyConference and Conference on Empirical Methods in Natural Language Processing,2005.P.347–354.[Электронныйресурс].URL:https://www.aclweb.org/anthology/H05-1044.pdf, (дата обращения: 15.12.2019).160. Wolny W.
Sentiment analysis of Twitter data using emoticons and emojiideograms //Studia Ekonomiczne, 2016. Т. 296. P. 163–171. [Электронный ресурс].URL:http://cejsh.icm.edu.pl/cejsh/element/bwmeta1.element.cejsh-74a49185-95f0-4712-a09f-ced5bf5477f1/c/10.pdf, (дата обращения: 15.12.2019).161. Yang B., Cardie C. Joint inference for fine-grained opinion extraction//Proceedings of the 51st Annual Meeting of the Association for ComputationalLinguistics (Volume 1: Long Papers), 2013. P. 1640–1649.
[Электронный ресурс].URL: https://www.aclweb.org/anthology/P13-1161.pdf, (дата обращения: 15.12.2019).162. Yang C-S., Shin H.-P. A Rule-Based Approach For Effective SentimentAnalysis // Pacific Asia Conference on Information Systems, 2012. [Электронныйресурс].URL:https://pdfs.semanticscholar.org/abc7/b6834e7e81088b9f2c03d246e2643e5f3c82.pdf,(дата обращения: 15.12.2019).163. Zhang C., Li Q., Song D. Syntax-Aware Aspect-Level SentimentClassification with Proximity-Weighted Convolution Network //Proceedings of the42nd International ACM SIGIR Conference on Research and Development inInformation Retrieval.
ACM, 2019. P. 1145–1148. [Электронный ресурс]. URL:https://arxiv.org/pdf/1909.10171, (дата обращения: 15.12.2019).158164. Zhang L., Liu B. Identifying noun product features that imply opinions//Proceedings of the 49th Annual Meeting of the Association for ComputationalLinguistics: Human Language Technologies: short papers-Volume 2. Association forComputational Linguistics, 2011. P. 575–580.
[Электронный ресурс]. URL:https://www.aclweb.org/anthology/P11-2101.pdf, (дата обращения: 15.12.2019).Список электронных ресурсов164. MyStem // URL: https://github.com/nlpub/pymystem3, (дата обращения:15.12.2019).165. Natural Language Tool Kit // URL: https://www.nltk.org/, (датаобращения: 15.12.2019).166. Open Corpora // URL: http://opencorpora.org/, (дата обращения:15.12.2019).167.
PyMorphy2//URL:https://github.com/kmike/pymorphy2,(датаобращения: 15.12.2019).168. Rupperhofen J. MPQA Annotation Scheme Details // mpqa.cs.pitt.edu.URL: http://mpqa.cs.pitt.edu/annotation/mpqa_scheme, (дата обращения: 15.12.2019).169. RuSentRel//URL:https://github.com/nicolay-r/RuSentRel,(датаобращения: 15.12.2019).170.