Диссертация (1173445), страница 27
Текст из файла (страница 27)
R. Predicting the semantic orientation ofadjectives //Proceedings of the 35th annual meeting of the association for computationallinguistics and eighth conference of the european chapter of the association forcomputational linguistics.–Association for Computational Linguistics, 1997. P. 174–181. [Электронный ресурс]. URL: https://www.aclweb.org/anthology/P97-1023.pdf,(дата обращения: 15.12.2019).105. Hatzivassiloglou V., Wiebe J. M. Effects of adjective orientation andgradability on sentence subjectivity //Proceedings of the 18th conference onComputational linguistics.
Volume 1. Association for Computational Linguistics, 2000.P. 299–305. [Электронный ресурс]. URL: https://www.aclweb.org/anthology/C001044.pdf, (дата обращения: 15.12.2019).106. Hiai S., Shimada K. Sarcasm detection using features based on indicatorand roles //International Conference on Soft Computing and Data Mining. Springer,Cham,2018.P.418–428.[Электронныйресурс].URL:https://www.researchgate.net/profile/Kazutaka_Shimada/publication/322394551_Sarcasm_Detection_Using_Features_Based_on_Indicator_and_Roles/links/5c775ed8458515831f757d12/Sarcasm-Detection-Using-Features-Based-on-Indicator-and-Roles.pdf, (датаобращения: 15.12.2019).149107. Huq M. R., Ali A., Rahman A. Sentiment analysis on Twitter data usingKNN and SVM //IJACSA International Journal of Advanced Computer Science andApplications, 2017.
Т. 8. №. 6. P. 19–25. [Электронный ресурс]. URL:https://pdfs.semanticscholar.org/05a8/78000170abcd0c6f8208080470858422e17c.pdf,(дата обращения: 15.12.2019).108. Jagtap V. S., Pawar K. Analysis of different approaches to sentence-levelsentiment classification //International Journal of Scientific Engineering andTechnology, 2013. Т. 2.
№. 3. P. 164–170. [Электронный ресурс]. URL:https://s3.amazonaws.com/academia.edu.documents/32491632/paper11.pdf?responsecontentdisposition=inline%3B%20filename%3DAnalysis_of_different_approaches_to_Sent.pdf&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-AmzCredential=AKIAIWOWYYGZ2Y53UL3A%2F20200221%2Fus-east1%2Fs3%2Faws4_request&X-Amz-Date=20200221T232458Z&X-AmzExpires=3600&X-Amz-SignedHeaders=host&X-AmzSignature=8338d789a56e5267a4d1f40948eb20448ab943fcd2ea0faa466c94188254c897, (дата обращения: 15.12.2019).109. Khoo C. S. G., Johnkhan S. B. Lexicon-based sentiment analysis:Comparative evaluation of six sentiment lexicons //Journal of Information Science,2018.Т.44.№.4.P.491–511.[Электронныйресурс].URL:https://dr.ntu.edu.sg/bitstream/10220/42704/1/Lexiconbased%20sentiment%20analysis%20_%20Comparative%20evaluation%20of%20six%20sentiment%20lexicons.pdf, (дата обращения: 15.12.2019).110.
Klenner М., Amsler M. Sentiframes: a resource for verb-centered germansentiment inference // Proceedings of the Tenth International Conference on LanguageResources and Evaluation (LREC 2016), Portorož (Slovenia), 23 May 2016 - 28 May2016,2016.P.2888–2891.[Электронныйhttps://www.zora.uzh.ch/id/eprint/126248/1/965_Paper.pdf,15.12.2019).ресурс].(датаURL:обращения:150111. Kochergina K. S. Approaches to Forming an Evaluative Lexicon (JuridicalLinguisticAspect),2015.[Электронныйресурс].URL:(датаhttp://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000534180,обращения: 15.12.2019).112. Kraus M., Feuerriegel S. Sentiment analysis based on rhetorical structuretheory: Learning deep neural networks from discourse trees //Expert Systems withApplications,2019.Т.118.P.65–79.[Электронныйресурс].URL:https://arxiv.org/pdf/1704.05228.pdf, (дата обращения: 15.12.2019).113.
Lexicon Adaptation for Spanish Emotion Mining / F.M. Plaza-del-Arco,M.D. Molina-González, S.M. Jiménez-Zafra, M.T. Martín-Valdivia //Procesamiento delLenguaje Natural, 2018. Т. 61. P. 117–124. [Электронный ресурс]. URL:http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/viewFile/2018-61-13/3386,(дата обращения: 15.12.2019).114. Li D., Qian J. Text sentiment analysis based on long short-term memory//2016 First IEEE International Conference on Computer Communication and theInternet (ICCCI).
IEEE, 2016. P. 471–475. [Электронный ресурс]. URL:https://ieeexplore.ieee.org/abstract/document/7778967, (дата обращения: 15.12.2019).115. Li G., Liu F. Application of a clustering method on sentiment analysis//Journal of Information Science, 2012. Т. 38. №. 2. P. 127–139.
[Электронныйресурс]. URL: https://journals.sagepub.com/doi/abs/10.1177/0165551511432670, (датаобращения: 15.12.2019).116. Liu B. Sentiment Analysis and Opinion Mining // Toronto: Morgan &Claypool Publishers, 2012. 184 p.117. Loukachevitch N., Lashevich G. Multiword expressions in RussianThesauri RuThes and RuWordNet. Proceedings of the AINL FRUCT 2016, 2016. P.66–71. [Электронный ресурс]. URL: https://fruct.org/publications/AINL-FRUCT2016/files/Lou.pdf, (дата обращения: 15.12.2019).118. Loukachevitch N., Rusnachenko N. Extracting sentiment attitudes fromanalytical texts //arXiv preprint arXiv:1808.08932, 2018.
[Электронный ресурс]. URL:https://arxiv.org/ftp/arxiv/papers/1808/1808.08932.pdf, (дата обращения: 15.12.2019).151119. Märkle-Huß J., Feuerriegel S., Prendinger H. Improving sentiment analysiswith document-level semantic relationships from rhetoric discourse structures//Proceedings of the 50th Hawaii International Conference on System Sciences.
HICSS,2017.P.1142–1151.[Электронныйресурс].URL:https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/182422/paper0139.pdf?sequence=2,(дата обращения: 15.12.2019).120. Mavljutov R. R., Ostapuk N. A. Using basic syntactic relations forsentiment analysis //Computational Linguistics and Intellectual Technologies:Proceedings of the International Conference «Dialog», 2013.
P. 91–100. [Электронныйресурс]. URL: http://www.dialog-21.ru/media/1268/mavljutovrr.pdf, (дата обращения:15.12.2019).121. Modeling Sentiment and Aspect Using Syntax: A Topic Model Approach /R. Xiea, M. Xiab, C. Lia, R.Y.K. Lauc // Proceedings of the 5th IIAE InternationalConference on Intelligent Systems and Image Processing, 2017. P. 191–196.ресурс].[ЭлектронныйURL:https://pdfs.semanticscholar.org/12ef/2699787de36060e7f63afb802c676174459f.pdf,(дата обращения: 15.12.2019).122.
Mohammad S. M. A Practical Guide to Sentiment Annotation: Challengesand Solutions // Proceedings of the 7th Workshop on Computational Approaches toSubjectivity, Sentiment and Social Media Analysis, 2016. P. 174–179. [Электронныйресурс]. URL: https://www.aclweb.org/anthology/W16-0429.pdf, (дата обращения:15.12.2019).123. Mohammad S.
M. Sentiment analysis: Detecting valence, emotions, andother affectual states from text //Emotion measurement. Woodhead Publishing, 2016. P.201–237.[Электронныйресурс].https://saifmohammad.com/WebDocs/emotion-survey.pdf,(датаURL:обращения:15.12.2019).124. Mullen T., Collier N. Sentiment analysis using support vector machineswith diverse information sources //Proceedings of the 2004 conference on empiricalmethods in natural language processing, 2004. P.
412–418. [Электронный ресурс].152URL:https://www.aclweb.org/anthology/W04-3253.pdf,обращения:(дата15.12.2019).125. Multilingual sentiment analysis: A new approach to measuring conflict inlegislative speeches / S.O. Proksch, W. Lowe, J. Wäckerle, S. Soroka //LegislativeStudies Quarterly, 2019.
Т. 44. №. 1. P. 97–131. [Электронный ресурс]. URL:https://onlinelibrary.wiley.com/doi/pdf/10.1111/lsq.12218,обращения:(дата15.12.2019).126. Nasukawa T., Yi J. Sentiment analysis: Capturing favorability using naturallanguage processing // Proceedings of the 2nd international conference on Knowledgecapture.ACM,2003.P.70–77.[Электронныйресурс].URL:https://www.researchgate.net/profile/Jeonghee_Yi/publication/220916772_Sentiment_analysis_Capturing_favorability_using_natural_language_processing/links/54ff4b970cf2741b69f63f22.pdf, (дата обращения: 15.12.2019).127. Neethu M.
S., Rajasree R. Sentiment analysis in twitter using machinelearningtechniques//2013FourthInternationalConferenceonComputing,Communications and Networking Technologies (ICCCNT). IEEE, 2013. P. 1–5.[Электронный ресурс]. URL: https://ieeexplore.ieee.org/abstract/document/6726818,(дата обращения: 15.12.2019).128. Odağ Ö., Schreier M. Qualitative Forschung in der Medienpsychologie//Handbuch Qualitative Forschung in der Psychologie, 2017. P. 1–16.
[Электронныйресурс]. URL: https://link.springer.com/referenceworkentry/10.1007%2F978-3-65818387-5_68-1, (дата обращения: 15.12.2019).129. Pang B., Lee L. Opinion mining and sentiment analysis //Foundations andTrends® in Information Retrieval. Boston: now Publishers Inc, 2008. Т. 2. №.
1–2. P.1–135.130. Pang B., Lee L., Vaithyanathan S. Thumbs up?: sentiment classificationusing machine learning techniques //Proceedings of the ACL-02 conference onEmpirical methods in natural language processing-Volume 10. Association forComputationalLinguistics,2002.P.79–86.[Электронныйhttps://arxiv.org/pdf/cs/0205070.pdf, (дата обращения: 15.12.2019).ресурс].URL:153131. Paul D., Frank A. Ranking and Selecting Multi-Hop Knowledge Paths toBetter Predict Human Needs //arXiv preprint arXiv:1904.00676, 2019. [Электронныйресурс]. URL: https://arxiv.org/pdf/1904.00676, (дата обращения: 15.12.2019).132.
Polarity analysis of texts using discourse structure / B. Heerschop, F.Goossen, A. Hogenboom [et al.] //Proceedings of the 20th ACM internationalconference on Information and knowledge management. ACM, 2011. P. 1061–1070.ресурс].[ЭлектронныйURL:https://www.academia.edu/download/56954841/cikm2011.pdf,(датаобращения:15.12.2019).133.
Polarity shift detection, elimination and ensemble: A three-stage model fordocument-level sentiment analysis / R. Xia, F. Xu, J. Yu [et al.] //InformationProcessing & Management, 2016. Т. 52. №. 1. P. 36–45. [Электронный ресурс]. URL:https://w.sentic.net/polarity-shift-detection.pdf, (дата обращения: 15.12.2019).134. Rashkin H., Singh S., Choi Y.
Connotation Frames: A Data drivenInvestigation // Proceedings of Association for Computational Linguistics ConferenceACL-2016,2016.P.311–322.ресурс].[ЭлектронныйURL:https://arxiv.org/pdf/1506.02739, (дата обращения: 15.12.2019).135. Recursive deep models for semantic compositionality over a sentimenttreebank / R Socher, A Perelygin, J Wu [et al.] //Proceedings of the 2013 conference onempirical methods in natural language processing, 2013. P. 1631–1642.