Диссертация (1155380), страница 15
Текст из файла (страница 15)
Simultaneous biodegradation of p-cresol and phenolby the basidiomycete Phanerochaete chrysosporium. // J. Ind. Microbiol.,~ 143 ~1994, 13(2), P. 311–314.103. Y. Lu, L. Yan, Y. Wang, S. Zhou, J. Fu, J. Zhang. Biodegradation ofphenolic compounds from coking wastewater by immobilized white rotfungus Phanerochaete chrysosporium. // J.
Hazard. Mater., 2009, 165(2), P.1091–1097.104. J.E.S. and G.M. C. J. Touhill, E. C. Martin, M. P. Fujihara, D. E. Olesen. Theeffects of radiation on chicago metropolitan saintary district municipal andindustrial wastwater. // Water Environmet Fed., 1969, 41(2), P. R44–R60.105. K. Sato, K. Takimoto, S. Tsuda. Degradation of Aqueous Phenol Solution byGamma Irradiation.
// Environ. Sci. Technol., 1978, 12(2), P. 1043–1046.106. K. Okamoto, Y. Yamamoto, H. Tanaka, M. Tanaka, A. Itaya. HeterogeneousPhotocatalytic Decomposition of Phenol over TiO2 Powder. // Bull. Chem.Soc. Jpn., 1985, 58(2), P. 2015–2022.107. M. Anbar, E.J. Hart. The Reactivity of Aromatic Compounds towardHydrated Electrons. // J. Am. Chem.
Soc., 1964, 86(2), P. 5633–5637.108. M. Anbar, D. Meyerstein, P. Neta. Reactivity of aromatic compounds towardhydroxyl radicals. // J. Phys. Chem., 1966, 70(2), P. 2660–2662.109. M.A. Stewart, W.R. Sherman, M.M. Kurien, G.I. Moonsammy, M.Wisgerhof. Polyol accumulations in nervous tissue of rats with exprimentaldiabetes and galactosaemia. // J. Neurochem., 1967, 14(2), P. 1057–1066.110. H. Takuyuki, S. Motomizu.
Contribution Phenols and of Substituent BenzoicAcids Groups. // Anal. Sci., 1991, 7(2), P. 129–135.111. K.S. Khachatryan, S. V. Smirnova, I.I. Torocheshnikova, N. V. Shvedene,A.A. Formanovsky, I. V. Pletnev. Solvent extraction and extractionvoltammetric determination of phenols using room temperature ionic liquid.// Anal. Bioanal.
Chem., 2005, 381(2), P. 464–470.~ 144 ~112. Y. Shimoyama, K. Ikeda, F. Su, Y. Iwai. Effect of isomers on partitioncoefficients for phenolic compounds in the 1-butyl-3-methylimidazoliumhexafluorophosphate + water two-phase system. // J. Chem. Eng. Data, 2010,55(2), P. 3151–3154.113. Y.I. Korenman, T.N. Ermolaeva, E.A. Podolina. Selective potentiometricdetermination of phenol and alkylphenols in nonaqueous extracts. // J.Radioanal. Nucl.
Chem., 1998, 228(2), P. 113–114.114. R.D. Girling, M. Hassal. Behavioural responses of the seven-spot ladybirdCoccinella septempunctata to plant headspace chemicals collected from fourcrop Brassicas and Arabidopsis thaliana , infested with Myzus persicae. //Agric. For. Entomol., 2008, 10(2), P. 297–306.115. I.A. Аndreozzi R., Caprio V., M. R. Advanced oxidation process (AOP) forwater purification and recovery. // Catal. Today, 1999, 53(2), P. 51–59.116. R. Andreozzi. Advanced oxidation processes (AOP) for water purificationand recovery. // Catal. Today, 1999, 53(2), P.
51–59.117. N. Azbar, T. Yonar, K. Kestioglu. Comparison of various advanced oxidationprocesses and chemical treatment methods for COD and color removal froma polyester and acetate fiber dyeing effluent. // Chemosphere, 2004, 55(2), P.35–43.118. D.M. Blake. Bibliography of work on the Photocatalytic Removal ofHazardous compounds from Water and Air. // Natl. Renew. Energy Lab.MASTER, 1994, 1(2), P. 89–102.119. A. K.Pikaev, B.G.
Ershov. Primary products of the radiolysis of water andtheir reactivity. // Russ. Chem. Rev., 1967, 36(2),.120. V. Belessi, D. Lambropoulou, I. Konstantinou, A. Katsoulidis, P. Pomonis,D. Petridis, T. Albanis. Structure and photocatalytic performance of~ 145 ~TiO2/clay nanocomposites for the degradation of dimethachlor. // Appl.Catal.
B Environ., 2007, 73(2), P. 292–299.121. C.Y. Kwan, W. Chu. The role of organic ligands in ferrous-inducedphotochemicaldegradationof2,4-dichlorophenoxyaceticacid.//Chemosphere, 2007, 67(2), P. 1601–1611.122. A.G. Agrios, P. Pichat. Recombination rate of photogenerated charges versussurface area: Opposing effects of TiO2 sintering temperature onphotocatalytic removal of phenol, anisole, and pyridine in water. // J.Photochem. Photobiol.
A Chem., 2006, 180(2), P. 130–135.123. D.F. Ollis. Contaminant degradation in water. // Environ. Sci. Technol.,1985, 19(2), P. 480–484.124. R. Matthews. Kinetics of photocatalytic oxidation of organic solutes overtitanium dioxide. // J. Catal., 1988, 111(2), P. 264–272.125. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann. EnvironmentalApplications of Semiconductor Photocatalysis. // Chem. Rev., 1995, 95(2), P.69–96.126. W.
Wu, M. Hong, X. Guo, J. Guo, X. Jiang. An approach toward TiO2nanostructure growth with tunable properties: influence of concentration oftitanium butoxide in a hydrothermal process. // J. Mater. Sci. Mater.Electron., 2016, 27(2), P. 7049–7054.127. M. Ando,the T. collaboration. Stable Operation of a 300-m LaserInterferometer with Sufficient Sensitivity to Detect Gravitational-WaveEvents within our Galaxy.
// 2001, P. 6–10.128. E.E. Bamuza-Pemu, E.M.N. Chirwa. Profile of aromatic intermediates oftitanium dioxide mediated degradation of phenol. // Chem. Eng. Trans., 2013,35(2), P. 1333–1338.~ 146 ~129. A.D. Weisz, L. García Rodenas, P.J. Morando, A.E. Regazzoni, M.A. Blesa.FTIR study of the adsorption of single pollutants and mixtures of pollutantsonto titanium dioxide in water: oxalic and salicylic acids.
// Catal. Today,2002, 76(2), P. 103–112.130. R. Asahi, Y. Taga, W. Mannstadt, A.J. Freeman. Electronic and opticalproperties of anatase TiO 2. // 2000, 61(2), P. 7459–7465.131. X. Chen, Y. Lou, S. Dayal, X. Qiu, R. Krolicki, C. Burda, C. Zhao, J.Becker. Doped Semiconductor Nanomaterials. // J. Nanosci. Nanotechnol.,2005, 5(2), P. 1408–1420.132. J.M. Macak, S. Aldabergerova, A.
Ghicov, P. Schmuki. Smooth anodic TiO2 nanotubes: Annealing and structure. // Phys. Status Solidi Appl. Mater.Sci., 2006, 203(2), P. 67–69.133. J.M. Macak, H. Tsuchiya, S. Berger, S. Bauer, S. Fujimoto, P. Schmuki. Onwafer TiO2 nanotube-layer formation by anodization of Ti-films on Si.
//Chem. Phys. Lett., 2006, 428(2), P. 421–425.134. J.M. Macak, P. Schmuki. Anodic growth of self-organized anodic TiO2nanotubes in viscous electrolytes. // Electrochim. Acta, 2006, 52(2), P. 1258–1264.135. T. Umebayashi, T. Yamaki, H. Itoh, K. Asai. Analysis of electronicstructures of 3d transition metal-doped TiO2 based on band calculations. // J.Phys. Chem. Solids, 2002, 63(2), P.
1909–1920.136. W. Li, Y. Wang, H. Lin, S.I. Shah, C.P. Huang, D.J. Doren, S.A. Rykov, J.G.Chen, M.A. Barteau. Band gap tailoring of Nd3+-doped TiO2 nanoparticles.// Appl. Phys. Lett., 2003, 83(2), P. 4143–4145.137. W. Choi, A. Termin, M.R. Hoffmann. Effects of Metal‐Ion Dopants on thePhotocatalytic Reactivity of Quantum‐Sized TiO2 Particles. // Angew.~ 147 ~Chemie Int.
Ed. English, 1994, 33(2), P. 1091–1092.138. J. Photochem, Z.A. Luot, R. April. Decrease in the photoactivity of TiOzpigment on doping with transition metals. // Energy, 1992, 63(2), P. 367–375.139. Y. Wang, H. Cheng, Y. Hao, J. Ma, W. Li, S. Cai. Preparation,characterization and photoelectrochemical behaviors of Fe(III)-doped TiO2nanoparticles. // J. Mater. Sci., 1999, 34(2), P. 3721–3729.140. R. Vogel, P. Hoyer, H.
Weller. Quantum-sized PbS, CdS, Ag2S, Sb2S3, andBi2S3 particles as sensitizers for various nanoporous wide-bandgapsemiconductors. // J. Phys. Chem., 1994, P. 3183–3188.141. K. Naoi, Y. Ohko, T. Tatsuma. TiO2 Films Loaded with SilverNanoparticles: Control of Multicolor Photochromic Behavior. // J. Am.Chem. Soc., 2004, 126(2), P. 3664–3668.142. K.
Kalyanasundaram. Applications of functionalized transition metalcomplexes in photonic and optoelectronic devices. // Coord. Chem. Rev.,1998, 177(2), P. 347–414.143. G.J. Meyer. Molecular approaches to solar energy conversion withcoordination compounds anchored to semiconductor surfaces. // Inorg.Chem., 2005, 44(2), P. 6852–6864.144.
Портал аналитической химии. // Http://www.chemical-Analysis.ru/analizNa-Elementy/tcirkonii-I-Gafnii/vse-Stranitcy.html, 2017,.145. М.А. Медков. Комплексные соединения циркония и гафния сосмешанными ацидолигандами. // Сер. Хим, 1978, C. 266.146. Чевела В.В., Безрядин С.Г., Иванова В.Ю., Мухамедьярова Л.И.,Григорьева Н.А., Залымов В.С. Цитраты циркония(IV) в водныхрастворах Ученые записки Казанского университета. // Ученые Записки~ 148 ~Казанского Государственного Университета Серия: ЕстественныеНауки, 2010, 152(2), C.
249–254.147. Н.В. Чернявская. Термодинамические свойства комплексов циркония(IV)игафния(IV)снитрилотриметиленфосфоновойполуметилтимоловымисиним,оксиэтилидендифосфоновойкислотами и гидроксокомплексов в водном растворе. // 1999, C. 131.148. Фонарь М.С., Фурманова Н.Г. Кристаллические структуры комплексовкрауни азакраун-эфиров с фторметаллатами циркония, гафния, ниобия итантала.
// Журнал Структурной Химии, 2009, 57(2), C. 131–142.149. Герасименко А.В. Вестник ДВО РАН. // 2006, 5(2), C. 17.150. Давидович Р.Л., Пушилин М.А., Логвинова В.Б. Мономерныйкомплексный анион [HfF5(H2O)2]- в кристаллической структуретригидрата пентафторогафната 4-амино-1, 2, 4-триазолия: синтез ирентгеноструктурное исследование. // Журнал Структурной Химии,2013, 54(2), C. 696–701.151. Жерикова К.В.