Диссертация (1155380), страница 16
Текст из файла (страница 16)
Кристаллические структуры комплексов гафния(IV) ициркония(IV) с β-дикетонами. // Журнал Структурной Химии, 2012,53(2), C. 771–777.152. Chernii V.Ya. Synthesis and Properties of Axially Substituted Zirconium(IV) and Hafnium (IV) Phthalocyanines with Organic Ligands. // J. Porphyr.Phthalocyanines, 2001, 10(2), P. 731–735.153. Томачинская Л.А., Черний В.Я. Синтез фталоцианиновых комплексовциркония и гафния с ацетилацетоном. // Укр.
Хим. Журн, 2001, 67(2), C.3–5.154. V.S..TomachynskiL.A.,CherniiV.Ya.Synthesisandspectralcharacterization of bis(β-diketonato)zirconium (IV) and – hafnium (IV)~ 149 ~phthalocyanines. // J. Porphyr. Phthalocyanines, 2002, 6(2), P. 90–96.155. В.С.. Томачинская Л.А., Черний В.Я. Синтез фталоцианиновыхдихлоридных комплексов титана, циркония и гафния. // Ж.
Неорг.Химии, n.d., 3(2), C. 254–257.156. ЧернийВ.Я.,Спектроскопические,фотоэлектрохимическиесвойствадикарбонилато)фталоцианиновыхэлектрокаталитическиесмешаннолигандныхкомплексовибис(в-циркония(IV)игафния(IV). // Теоретическая И Экспериментальная Химия, 2008, 3(2),C. 133–137.157. В.Д. Махаев, Л.А.
Петрова, Н.М. Бравая, Е.Е. Файнгольд, Е.В. Мухина,Б.М.Б. А. Н. Панин, С. Ч. Гагиева, В. А. Тускаев. Механохимическийсинтез феноксииминных комплексов циркония и гафния составаL2МCl2 (L = N-(3, 5-ди-трет-бутилсалицилиден)- 2, 3, 5, 6тетрафторанилинат-анион) и их каталитические свойства в реакцииполимеризации этилена. // Известия АН. Серия Химическая, 2014, 7(2),C. 1533.158. A.D. Becke.
Density-functional thermochemistry III The role of exactexchange. // J. Chem. Phys., 1993, 98(2), P. 5648–5652.159. C. Lee, W. Yang, R.G. Parr. Development of the Colle-Salvetti correlationenergy formula into a functional of the electron density. // Phys. Rev., 1988,B37(2), P. 785–789.160. P.
J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch. P J Ab initiocalculation of vibrational absorption and circular dichroism spectra usingdensity functional force fields. // J. Phys. Chem, 1994, 98(2), P. 11623–11627.161. T. Dunning. Gaussian-basis sets for use in correlated molecular calculations IThe atoms boron through neon and hydrogen. // J. Chem. Phys, 1989, 90(2),~ 150 ~P. 1007–1024.162.
P.J. Hay, W.R. Wadt. initio effective core potentials for molecularcalculations Potentials for the transition metal atoms Sc to Hg. // J. Chem.Phys., 1985, 82(2), P. 270–284.163. M.D. M.W.Schmidt, K.K.Baldridge, J.A.Boatz, S.T.Elbert, M.S.Gordon,J.H.Jensen, S.Koseki, N.Matsunaga, K.A.Nguyen, S.Su, T.L.Windus.GeneralAtomicandMolecularElectronicStructureSystem.//J.Comput.Chem, 1993, 14(2), P. 1347–1363.164. S. Jafari, F.
Zhao, D. Zhao, M. Lahtinen, A. Bhatnagar, M. Sillanpää. Acomparative study for the removal of methylene blue dye by N and Smodified TiO2 adsorbents. // J. Mol. Liq., 2015, 207(2), P. 90–98.165. G.U. Badranova, P.M. Gotovtsev, Y. V. Zubavichus, I.A. Staroselskiy, A.L.Vasiliev, I.N.
Trunkin, M. V. Fedorov. Biopolymer-based hydrogels forencapsulation of photocatalytic TiO2 nanoparticles prepared by thefreezing/thawing method. // J. Mol. Liq., 2016, 223(2), P. 16–20.166. S. Jafari, B. Tryba, E. Kusiak-Nejman, J. Kapica-Kozar, A.W. Morawski, M.Sillanp. The role of adsorption in the photocatalytic decomposition of OrangeII on carbon-modified TiO2. // J. Mol. Liq., 2016, 220(2), P. 504–512.167. A.A. Salarian, Z. Hami, N.
Mirzaie, S.M. Mohseni, A. Asadi, H. Bahrami,M. Vosoughi, A. Alinejad, M.R. Zare. N-doped TiO2 nanosheets forphotocatalytic degradation and mineralization of diazinon under simulatedsolar irradiation: Optimization and modeling using a response surfacemethodology. // J. Mol. Liq., 2016, 220(2), P. 183–191.168. L. Yanyan, T.A. Kurniawan, Z. Ying, A.B. Albadarin, G. Walker. Enhancedphotocatalytic degradation of acetaminophen from wastewater using WO 3/TiO 2 /SiO 2 composite under UV–VIS irradiation. // J. Mol. Liq., 2017,243(2), P. 761–770.~ 151 ~169. Y. Wang, H. Ye, G. Zuo, J. Luo.
Synthesis of a novel poly (ethylene glycol)grafted N,N-dimethylaminopyridine functionalized dicationic ionic liquidand its application in one-pot synthesis of 3,4-dihydropyrano[3,2-c]chromenederivatives in water. // J. Mol. Liq., 2015, 212(2), P. 418–422.170. A. Sorkh-Kaman-Zadeh, A. Dashtbozorg. Facile chemical synthesis ofnanosize structure of Sr2TiO4 for degradation of toxic dyes from aqueoussolution. // J.
Mol. Liq., 2016, 223(2), P. 921–926.171. F. Baillon, E. Provost, W. Fürst. Study of titanium(IV) speciation insulphuric acid solutions by FT-Raman spectrometry. // J. Mol. Liq., 2008,143(2), P. 8–12.172. S.M. Ghoreishi, F.Z. Kashani, A. Khoobi, M. Enhessari. Fabrication of anickel titanate nanoceramic modified electrode for electrochemical studiesand detection of salicylic acid. // J. Mol. Liq., 2015, 211(2), P.
970–980.173. L.S. Chougala, J.S. Kadadevarmath, A.A. Kamble, P.K. Bayannavar, M.S.Yatnatti, R.K. Linganagoudar, J.M. Nirupama, R.R. Kamble, Q. Qiao. Effectof TiO 2 nanoparticles on newly synthesized phenothiazine derivative-CPTAdye and its applications as dye sensitized solar cell. // J. Mol. Liq., 2017,244(2), P. 97–102.174. Y. Shen, X.
Ren, G. Xu, Z. Huang, X. Qi. Mixed-dimensional TiO2nanoparticles with MoSe2 nanosheets for photochemical hydrogengeneration. // J. Mater. Sci. Mater. Electron., 2017, 28(2), P. 2023–2028.175. S.S. Rane, D.A. Kajale, S.S. Arbuj, S.B. Rane, S.W. Gosavi. Hydrogen,ethanol and ammonia gas sensing properties of nano-structured titaniumdioxide thick films. // J. Mater. Sci.
Mater. Electron., 2017, 28(2), P. 9011–9016.176. S. Patel, P. Patel, S.B. Undre, S.R. Pandya, M. Singh, S. Bakshi. DNAbinding and dispersion activities of titanium dioxide nanoparticles with~ 152 ~UV/vis spectrophotometry, fluorescence spectroscopy and physicochemicalanalysis at physiological temperature. // J. Mol. Liq., 2016, 213(2), P. 304–311.177. M.A. Deyab, K. Eddahaoui, R. Essehli, S. Benmokhtar, T. Rhadfi, A.
DeRiccardis, G. Mele. Influence of newly synthesized titanium phosphates onthe corrosion protection properties of alkyd coating. // J. Mol. Liq., 2016,216(2), P. 699–703.178. S. Dubey, S. Banerjee, S.N. Upadhyay, Y.C. Sharma. Application ofcommon nano-materials for removal of selected metallic species from waterand wastewaters: A critical review. // J. Mol. Liq., 2017, 240(2), P. 656–677.179.
A.C. Dhayagude, S. V. Nikam, S. Kapoor, S.S. Joshi. Effect of electrolyticmedia on the photophysical properties and photocatalytic activity of zincoxide nanoparticles synthesized by simple electrochemical method. // J. Mol.Liq., 2017, 232(2), P. 290–303.180. А.Ш. Бостанабад. Синтез, строение и свойства комплексов металлов СN-алкил(бензил)-N-нитрозо гидроксиламинами. // Дисс. … к.х.н., M.,РУДН, 2014, 107 С.181. M.A. Ahmed.
Synthesis and structural features of mesoporous NiO/TiO 2nanocomposites prepared by sol-gel method for photodegradation ofmethylene blue dye. // J. Photochem. Photobiol. A Chem., 2012, 238(2), P.63–70.182. Н.Т. Ле. Влияние условий синтеза нанокристалического диоксидатитана природу и параметры спиновых центров. // Дисс. … к.ф.-м.н., М.,МГУ, 2017, 140 С.183. F. Coloma, F.
Marquez, C.H. Rochester, J. a. Anderson. Determination of thenature and reactivity of copper sites in Cu–TiO2 catalysts. // Phys. Chem.Chem. Phys., 2000, 2(2), P. 5320–5327.~ 153 ~184. H. Yamashita, M. Honda, M. Harada, Y. Ichihashi, M. Anpo, T. Hirao, N.Itoh, N. Iwamoto. Preparation of Titanium Oxide Photocatalysts Anchoredon Porous Silica Glass by a Metal Ion-Implantation Method and TheirPhotocatalytic Reactivities for the Degradation of 2-Propanol Diluted inWater. // J. Phys. Chem. B, 1998, 102(2), P. 10707–10711.185.
N. Liu, C. Schneider, D. Freitag, M. Hartmann, U. Venkatesan, J. Müller, E.Spiecker, P. Schmuki. Black TiO2 nanotubes: Cocatalyst-free open-circuithydrogen generation. // Nano Lett., 2014, 14(2), P. 3309–3313.186. А. В. Кострикин. Синтез, строение и свойства гидроксо-, гидроксооксои оксосоединений. // Дисс. … д.х.н., М.: РУДН, 2012, 316 С.187. T. Wang, G.
Yang, J. Liu, B. Yang, S. Ding, Z. Yan, T. Xiao. Orthogonalsynthesis, structural characteristics, and enhanced visible-light photocatalysisof mesoporous Fe2O3/TiO 2 heterostructured microspheres. // Appl. Surf.Sci., 2014, 311(2), P. 314–323.188. A. Mohammadi, M. Ghorbani. A facile particulate sol-gel route to synthesizenanostructured CoTiO3 thin films and powders and their characteristics.
// J.Mater. Sci. Mater. Electron., 2015, 26(2), P. 5243–5253.189. J. Tauc. Optical properties and electronic structure of amorphous Ge and Si.// Mater. Res. Bull., 1968, 3(2), P. 37–46.190. S. Mobini, F. Meshkani, M. Rezaei. Synthesis and characterization ofnanocrystalline copper–chromium catalyst and its application in the oxidationof carbon monoxide. // Process Saf. Environ. Prot., 2017, 107(2), P. 181–189.191. Бромфеноловый синий.
// Wikimedia Found., 2017.192. A. Moghtada, A. Shahrouzianfar, R. Ashiri. Facile synthesis of NiTiO3yellow nano-pigments with enhanced solar radiation reflection efficiency byan innovative one-step method at low temperature. // Dye. Pigment, 2015,~ 154 ~123(2), P. 92–99.193. T.-T. Pham, S.G. Kang, E.W. Shin. Optical and structural properties of Modoped NiTiO3 materials synthesized via modified Pechini methods. // Appl.Surf. Sci., 2017.194. M.I. Díez-García, D. Monllor-Satoca, V. Vinoth, S. Anandan, T. LanaVillarreal. Electrochemical Doping as a Way to Enhance WaterPhotooxidation on Nanostructured Nickel Titanate and Anatase Electrodes.
//ChemElectroChem, 2017.195. S. Kotova, B. Follink, L. Del Castillo, C. Priest. Leaching gold by reactiveflow of ammonium thiosulfate solution in high aspect ratio channels: Rate,passivation, and profile. // Hydrometallurgy, 2017, 169(2), P. 207–212.196. L. Zhou, C. Ferronato, J.-M. Chovelon, M. Sleiman, C. Richard.Investigations of diatrizoate degradation by photo-activated persulfate. //Chem.
Eng. J., 2017, 311(2), P. 28–36.197. C. Tan, N. Gao, D. Fu, J. Deng, L. Deng. Efficient degradation ofparacetamol with nanoscaled magnetic CoFe2O4 and MnFe2O4 as aheterogeneous catalyst of peroxymonosulfate. // Sep. Purif. Technol., 2017,175(2), P. 47–57.198. N. Barhoumi, H. Olvera-Vargas, N. Oturan, D. Huguenot, A. Gadri, S.Ammar,E.Brillas,M.A.Oturan.Kineticsofoxidativedegradation/mineralization pathways of the antibiotic tetracycline by thenovel heterogeneous electro-Fenton process with solid catalyst chalcopyrite.// Appl. Catal. B Environ., 2017, 209(2), P. 637–647.199. Y. Wang, H. Wei, Y.
Zhao, W. Sun, C. Sun. The optimization, kinetics andmechanism of m-cresol degradation via catalytic wet peroxide oxidation withsludge-derived carbon catalyst. // J. Hazard. Mater., 2017, 326(2), P. 36–46.~ 155 ~200. K.V. Kumar, K. Porkodi, F.Rocha. Langmuir–Hinshelwood kinetics – Atheoretical study. // Catal. Commun., 2008, 9(2), P. 82–84.201. L.R.M.
Janani S., S.R.K.S., Padmini Ellappan. Photodegradation ofmethylene blue using magnetically reduced graphene oxide bismuthoxybromide composite. // J. Environ. Chem. Eng., 2016, 4(2), P. 534–541.202. H.F. Y. Qu, W.Z., L. Jiang. Novel heterogeneous CdS nanoparticles/NiTiO3nanorods with enhanced visible-light-driven photocatalytic activity. // RSCAdv., 2013, 3(2), P. 18305–18310..