Диссертация (1154770), страница 19
Текст из файла (страница 19)
Hill S.C. et al. Arthropathy of neonatal onset multisystem inflammatory disease(NOMID/CINCA) // Pediatr. Radiol. 2007. Vol. 37, № 2. P. 145–152.66. Siegal S. Benign paroxysmal peritonitis // Gastroenterology. 1949. Vol. 12, № 2. P.234–247.67. Touitou I. et al. Infevers: an evolving mutation database for auto-inflammatorysyndromes // Hum.
Mutat. 2004. Vol. 24, № 3. P. 194–198.68. Milhavet F. et al. The infevers autoinflammatory mutation online registry: updatewith new genes and functions // Hum. Mutat. 2008. Vol. 29, № 6. P. 803–808.69. Ancient missense mutations in a new member of the RoRet gene family are likelyto cause familial Mediterranean fever. The International FMF Consortium // Cell.1997. Vol. 90, № 4. P. 797–807.70. Centola M., Aksentijevich I., Kastner D.L. The hereditary periodic feversyndromes: molecular analysis of a new family of inflammatory diseases // Hum.Mol.
Genet. 1998. Vol. 7, № 10. P. 1581–1588.71. Diaz A. et al. Lipopolysaccharide-induced expression of multiple alternativelyspliced MEFV transcripts in human synovial fibroblasts: a prominent splice107isoform lacks the C-terminal domain that is highly mutated in familialMediterranean fever // Arthritis Rheum. 2004. Vol. 50, № 11. P. 3679–3689.72. Chae J.J. et al.
The familial Mediterranean fever protein, pyrin, is cleaved bycaspase-1 and activates NF-kappaB through its N-terminal fragment // Blood. 2008.Vol. 112, № 5. P. 1794–1803.73. Mansfield E. et al. The familial Mediterranean fever protein, pyrin, associates withmicrotubules and colocalizes with actin filaments // Blood. 2001. Vol. 98, № 3. P.851–859.74.
Goldfinger S.E. Colchicine for familial Mediterranean fever // N. Engl. J. Med.1972. Vol. 287, № 25. P. 1302.75. Richards N. et al. Interaction between pyrin and the apoptotic speck protein (ASC)modulates ASC-induced apoptosis // J. Biol. Chem. 2001. Vol. 276, № 42. P.39320–39329.76. Yu J.-W. et al. Cryopyrin and pyrin activate caspase-1, but not NF-kappaB, viaASC oligomerization // Cell Death Differ. 2006. Vol. 13, № 2. P. 236–249.77. Chae J.J. et al. The B30.2 domain of pyrin, the familial Mediterranean feverprotein, interacts directly with caspase-1 to modulate IL-1beta production // Proc.Natl.
Acad. Sci. U. S. A. 2006. Vol. 103, № 26. P. 9982–9987.78. Papin S. et al. The SPRY domain of Pyrin, mutated in familial Mediterranean feverpatients, interacts with inflammasome components and inhibits proIL-1betaprocessing // Cell Death Differ. 2007. Vol. 14, № 8.
P. 1457–1466.79. Hall M.W. et al. Monocyte mRNA phenotype and adverse outcomes from pediatricmultiple organ dysfunction syndrome // Pediatr. Res. 2007. Vol. 62, № 5. P. 597–603.80. Seshadri S. et al. Pyrin levels in human monocytes and monocyte-derivedmacrophages regulate IL-1beta processing and release // J. Immunol. Baltim. Md1950.
2007. Vol. 179, № 2. P. 1274–1281.81. Belkhir R. et al. Treatment of familial Mediterranean fever with anakinra // Ann.Intern. Med. 2007. Vol. 146, № 11. P. 825–826.10882. Lindor N.M. et al. A new autosomal dominant disorder of pyogenic sterile arthritis,pyoderma gangrenosum, and acne: PAPA syndrome // Mayo Clin. Proc. 1997. Vol.72, № 7. P. 611–615.83. Wise C.A. et al. Mutations in CD2BP1 disrupt binding to PTP PEST and areresponsible for PAPA syndrome, an autoinflammatory disorder // Hum. Mol.Genet. 2002. Vol. 11, № 8. P. 961–969.84.
Medzhitov R., Janeway C.A. Innate immunity: the virtues of a nonclonal system ofrecognition // Cell. 1997. Vol. 91, № 3. P. 295–298.85. Smith E.J. et al. Clinical, Molecular, and Genetic Characteristics of PAPASyndrome: A Review // Curr.
Genomics. 2010. Vol. 11, № 7. P. 519–527.86. Demidowich A.P. et al. Brief report: genotype, phenotype, and clinical course infive patients with PAPA syndrome (pyogenic sterile arthritis, pyodermagangrenosum, and acne) // Arthritis Rheum. 2012. Vol. 64, № 6. P. 2022–2027.87. Yu J.-W. et al. Pyrin activates the ASC pyroptosome in response to engagement byautoinflammatory PSTPIP1 mutants // Mol. Cell.
2007. Vol. 28, № 2. P. 214–227.88. El-Shanti H.I., Ferguson P.J. Chronic recurrent multifocal osteomyelitis: a concisereview and genetic update // Clin. Orthop. 2007. Vol. 462. P. 11–19.89. Ferguson P.J., El-Shanti H.I. Autoinflammatory bone disorders // Curr. Opin.Rheumatol. 2007. Vol. 19, № 5. P. 492–498.90. Majeed H.A. et al.
The syndrome of chronic recurrent multifocal osteomyelitis andcongenital dyserythropoietic anaemia. Report of a new family and a review // Eur.J. Pediatr. 2001. Vol. 160, № 12. P. 705–710.91. Ferguson P.J. et al. Homozygous mutations in LPIN2 are responsible for thesyndromeofchronicrecurrentmultifocalosteomyelitisandcongenitaldyserythropoietic anaemia (Majeed syndrome) // J. Med. Genet.
2005. Vol. 42, №7. P. 551–557.92. Byrd L. et al. Chronic multifocal osteomyelitis, a new recessive mutation onchromosome 18 of the mouse // Genomics. 1991. Vol. 11, № 4. P. 794–798.10993. Ferguson P.J. et al. A missense mutation in pstpip2 is associated with the murineautoinflammatory disorder chronic multifocal osteomyelitis // Bone. 2006. Vol.
38,№ 1. P. 41–47.94. Houten S.M. et al. Mutations in MVK, encoding mevalonate kinase, causehyperimmunoglobulinaemia D and periodic fever syndrome // Nat. Genet. 1999.Vol. 22, № 2. P. 175–177.95. van der Hilst J.C.H. et al. Long-term follow-up, clinical features, and quality of lifein a series of 103 patients with hyperimmunoglobulinemia D syndrome // Medicine(Baltimore). 2008. Vol. 87, № 6. P. 301–310.96.
Houten S.M. et al. Carrier frequency of the V377I (1129G>A) MVK mutation,associated with Hyper-IgD and periodic fever syndrome, in the Netherlands // Eur.J. Hum. Genet. EJHG. 2003. Vol. 11, № 2. P. 196–200.97. Haas D., Hoffmann G.F. Mevalonate kinase deficiencies: from mevalonic aciduriato hyperimmunoglobulinemia D syndrome // Orphanet J. Rare Dis.
2006. Vol. 1. P.13.98. Ruiz Gomez A. et al. Clinical, genetic, and therapeutic diversity in 2 patients withsevere mevalonate kinase deficiency // Pediatrics. 2012. Vol. 129, № 2. P. e535539.99. Cuisset L. et al. Molecular analysis of MVK mutations and enzymatic activity inhyper-IgD and periodic fever syndrome // Eur. J. Hum. Genet.
EJHG. 2001. Vol. 9,№ 4. P. 260–266.100. Drenth J.P. et al. Cutaneous manifestations and histologic findings in thehyperimmunoglobulinemia D syndrome. International Hyper IgD Study Group //Arch. Dermatol. 1994. Vol. 130, № 1. P. 59–65.101. Gattorno M. et al. A diagnostic score for molecular analysis of hereditaryautoinflammatory syndromes with periodic fever in children // Arthritis Rheum.2008.
Vol. 58, № 6. P. 1823–1832.102. Bader-Meunier B. et al. Mevalonate kinase deficiency: a survey of 50 patients //Pediatrics. 2011. Vol. 128, № 1. P. e152-159.110103. Lachmann H.J. et al. AA amyloidosis complicating hyperimmunoglobulinemia Dwith periodic fever syndrome: a report of two cases // Arthritis Rheum. 2006. Vol.54, № 6. P. 2010–2014.104. Obici L.
et al. First report of systemic reactive (AA) amyloidosis in a patient withthe hyperimmunoglobulinemia D with periodic fever syndrome // Arthritis Rheum.2004. Vol. 50, № 9. P. 2966–2969.105. Siewert R. et al. Hereditary periodic fever with systemic amyloidosis: is hyper-IgDsyndrome really a benign disease? // Am. J. Kidney Dis. Off. J. Natl. KidneyFound. 2006. Vol. 48, № 3. P. e41-45.106. Li Cavoli G. et al. Renal amyloidosis due to hyper-IgD syndrome // Nefrol.
Publ.Of. Soc. Esp. Nefrol. 2012. Vol. 32, № 6. P. 865–866.107. Hoffmann G. et al. Mevalonic aciduria--an inborn error of cholesterol and nonsterolisoprene biosynthesis // N. Engl. J. Med. 1986. Vol. 314, № 25. P. 1610–1614.108. Kuijk L.M. et al. HMG-CoA reductase inhibition induces IL-1beta release throughRac1/PI3K/PKB-dependent caspase-1 activation // Blood. 2008. Vol. 112, № 9. P.3563–3573.109. Simon A. et al. Effect of inflammatory attacks in the classical type hyper-IgDsyndrome on immunoglobulin D, cholesterol and parameters of the acute phaseresponse // J. Intern.
Med. 2004. Vol. 256, № 3. P. 247–253.110. Simon A. et al. Genetic analysis as a valuable key to diagnosis and treatment ofperiodic Fever // Arch. Intern. Med. 2001. Vol. 161, № 20. P. 2491–2493.111. CailliezM.etal.Anakinraissafeandeffectiveincontrollinghyperimmunoglobulinaemia D syndrome-associated febrile crisis // J. Inherit.Metab. Dis. 2006. Vol. 29, № 6. P. 763.112. Bodar E.J.
et al. Effect of etanercept and anakinra on inflammatory attacks in thehyper-IgD syndrome: introducing a vaccination provocation model // Neth. J. Med.2005. Vol. 63, № 7. P. 260–264.113. Galon J. et al. TNFRSF1A mutations and autoinflammatory syndromes // Curr.Opin. Immunol. 2000. Vol. 12, № 4. P. 479–486.111114. Chen C.-J. et al. MyD88-dependent IL-1 receptor signaling is essential for goutyinflammation stimulated by monosodium urate crystals // J. Clin. Invest.