Диссертация (1154770), страница 21
Текст из файла (страница 21)
Familial and acquired hemophagocytic lymphohistiocytosis // Eur. J.Pediatr. 2007. Vol. 166, № 2. P. 95–109.169. Hansson G.K. Inflammation, atherosclerosis, and coronary artery disease // N.Engl. J. Med. 2005. Vol. 352, № 16. P. 1685–1695.116170. van Venrooij W.J., van Beers J.J.B.C., Pruijn G.J.M. Anti-CCP antibodies: the past,the present and the future // Nat. Rev. Rheumatol. 2011. Vol. 7, № 7. P.
391–398.171. Kallenberg C.G.M., Heeringa P., Stegeman C.A. Mechanisms of Disease:pathogenesis and treatment of ANCA-associated vasculitides // Nat. Clin. Pract.Rheumatol. 2006. Vol. 2, № 12. P. 661–670.172. Yang J.J. et al. Target antigens for anti-neutrophil cytoplasmic autoantibodies(ANCA) are on the surface of primed and apoptotic but not unstimulatedneutrophils // Clin. Exp. Immunol. 2000. Vol. 121, № 1. P.
165–172.173. Kain R., Firmin D.A., Rees A.J. Pathogenesis of small vessel vasculitis associatedwith autoantibodies to neutrophil cytoplasmic antigens: new insights from animalmodels // Curr. Opin. Rheumatol. 2010. Vol. 22, № 1. P. 15–20.174. Falk R.J. et al. Anti-neutrophil cytoplasmic autoantibodies induce neutrophils todegranulate and produce oxygen radicals in vitro // Proc. Natl. Acad. Sci. U. S. A.1990. Vol. 87, № 11. P.
4115–4119.175. Hong Y. et al. Anti-neutrophil cytoplasmic antibodies stimulate release ofneutrophil microparticles // J. Am. Soc. Nephrol. JASN. 2012. Vol. 23, № 1. P. 49–62.176. Kessenbrock K. et al. Netting neutrophils in autoimmune small-vessel vasculitis //Nat. Med. 2009. Vol. 15, № 6. P. 623–625.177. Antonopoulos C. et al. Functional caspase-1 is required for Langerhans cellmigration and optimal contact sensitization in mice // J. Immunol. Baltim.
Md1950. 2001. Vol. 166, № 6. P. 3672–3677.178. Burger D. et al. Is IL-1 a good therapeutic target in the treatment of arthritis? // BestPract. Res. Clin. Rheumatol. 2006. Vol. 20, № 5. P. 879–896.179. Ulfgren A.K. et al. Interindividual and intra-articular variation of proinflammatorycytokines in patients with rheumatoid arthritis: potential implications for treatment// Ann. Rheum. Dis. 2000. Vol.
59, № 6. P. 439–447.180. Chung Y. et al. Critical regulation of early Th17 cell differentiation by interleukin1 signaling // Immunity. 2009. Vol. 30, № 4. P. 576–587.117181. Martinon F., Burns K., Tschopp J. The inflammasome: a molecular platformtriggering activation of inflammatory caspases and processing of proIL-beta // Mol.Cell. 2002. Vol. 10, № 2. P.
417–426.182. Piram M. et al. A preliminary score for the assessment of disease activity inhereditary recurrent fevers: results from the AIDAI (Auto-Inflammatory DiseasesActivity Index) Consensus Conference // Ann. Rheum. Dis. 2011. Vol. 70, № 2. P.309–314.183. Piram M. et al.
Validation of the auto-inflammatory diseases activity index(AIDAI) for hereditary recurrent fever syndromes // Ann. Rheum. Dis. 2014. Vol.73, № 12. P. 2168–2173.184. Korkmaz C. et al. Acute phase response in familial Mediterranean fever // Ann.Rheum. Dis. 2002. Vol. 61, № 1. P. 79–81.185. Duzova A. et al. Role of A-SAA in monitoring subclinical inflammation and incolchicine dosage in familial Mediterranean fever // Clin. Exp.
Rheumatol. 2003.Vol. 21, № 4. P. 509–514.186. Lachmann H.J. et al. Clinical and subclinical inflammation in patients with familialMediterranean fever and in heterozygous carriers of MEFV mutations //Rheumatol. Oxf. Engl. 2006. Vol. 45, № 6.
P. 746–750.187. Tunca M. et al. Acute phase response and evolution of familial Mediterranean fever// Lancet Lond. Engl. 1999. Vol. 353, № 9162. P. 1415.188. Klimecki W.T. et al. P-glycoprotein expression and function in circulating bloodcells from normal volunteers // Blood. 1994. Vol. 83, № 9. P.
2451–2458.189. Ben-Zvi I., Livneh A. Chronic inflammation in FMF: markers, risk factors,outcomes and therapy // Nat. Rev. Rheumatol. 2011. Vol. 7, № 2. P. 105–112.190. Berkun Y. et al. A single testing of serum amyloid a levels as a tool for diagnosisand treatment dilemmas in familial Mediterranean fever // Semin. Arthritis Rheum.2007. Vol. 37, № 3. P.
182–188.191. Kosan C., Cayir A., Turan M.I. Relationship between genetic mutation variationsand acute-phase reactants in the attack-free period of children diagnosed with118familial Mediterranean fever // Braz. J. Med. Biol. Res. Rev. Bras. Pesqui. MédicasE Biológicas Soc. Bras. Biofísica Al. 2013. Vol. 46, № 10. P. 904–908.192. Ergüven M. et al. Relation between microalbuminuria and gene mutations infamilial Mediterranean fever // Turk.
J. Pediatr. 2008. Vol. 50, № 4. P. 326–330.193. Mor A. et al. Evaluation of Disease Severity in Familial Mediterranean Fever //Semin. Arthritis Rheum. 2005. Vol. 35, № 1. P. 57–64.194. Gershoni-Baruch R. et al. Male sex coupled with articular manifestations cause a 4fold increase in susceptibility to amyloidosis in patients with familialMediterranean fever homozygous for the M694V-MEFV mutation // J.
Rheumatol.2003. Vol. 30, № 2. P. 308–312.195. Gershoni-Baruch R. et al. The contribution of genotypes at the MEFV and SAA1loci to amyloidosis and disease severity in patients with familial Mediterraneanfever // Arthritis Rheum. 2003. Vol. 48, № 4. P. 1149–1155.196. Gang N.
et al. Activation of the cytokine network in familial Mediterranean fever //J. Rheumatol. 1999. Vol. 26, № 4. P. 890–897.197. Kiraz S. et al. Effects of colchicine on inflammatory cytokines and selectins infamilial Mediterranean fever // Clin.
Exp. Rheumatol. 1998. Vol. 16, № 6. P. 721–724.198. Kitamura K. et al. Pivotal roles of interleukin-6 in transmural inflammation inmurine T cell transfer colitis // J. Leukoc. Biol. 2004. Vol. 76, № 6. P. 1111–1117.199. Mege J.L. et al. Overproduction of monocyte derived tumor necrosis factor alpha,interleukin (IL) 6, IL-8 and increased neutrophil superoxide generation in Behçet’sdisease.
A comparative study with familial Mediterranean fever and healthysubjects // J. Rheumatol. 1993. Vol. 20, № 9. P. 1544–1549.200. DrenthJ.P.etal.Cytokineactivationduringattacksofthehyperimmunoglobulinemia D and periodic fever syndrome // Blood. 1995. Vol. 85,№ 12. P. 3586–3593.201. Melamed A. et al. The immune regulation in familial Mediterranean fever (FMF) //J. Clin. Lab. Immunol. 1988. Vol. 26, № 3.
P. 125–128.119202. Dinarello C.A. Blocking IL-1 in systemic inflammation // J. Exp. Med. 2005. Vol.201, № 9. P. 1355–1359.203. Rozenbaum M. et al. Decreased interleukin 1 activity released from circulatingmonocytes of patients with familial Mediterranean fever during in vitro stimulationby lipopolysaccharide // J. Rheumatol. 1992. Vol. 19, № 3. P. 416–418.204. Moore B.W. A soluble protein characteristic of the nervous system // Biochem.Biophys. Res.
Commun. 1965. Vol. 19, № 6. P. 739–744.205. Marenholz I., Lovering R.C., Heizmann C.W. An update of the S100 nomenclature// Biochim. Biophys. Acta. 2006. Vol. 1763, № 11. P. 1282–1283.206. Heizmann C.W., Cox J.A. New perspectives on S100 proteins: a multi-functionalCa(2+)-, Zn(2+)- and Cu(2+)-binding protein family // Biometals Int. J. Role Met.Ions Biol. Biochem. Med. 1998. Vol.
11, № 4. P. 383–397.207. Moroz O.V. et al. Both Ca2+ and Zn2+ are essential for S100A12 proteinoligomerization and function // BMC Biochem. 2009. Vol. 10. P. 11.208. Vogl T. et al. MRP8 and MRP14 control microtubule reorganization duringtransendothelial migration of phagocytes // Blood. 2004.
Vol. 104, № 13. P. 4260–4268.209. Rammes A. et al. Myeloid-related protein (MRP) 8 and MRP14, calcium-bindingproteins of the S100 family, are secreted by activated monocytes via a novel,tubulin-dependent pathway // J. Biol. Chem. 1997. Vol. 272, № 14. P. 9496–9502.210. Urban C.F. et al.
Neutrophil extracellular traps contain calprotectin, a cytosolicprotein complex involved in host defense against Candida albicans // PLoS Pathog.2009. Vol. 5, № 10. P. e1000639.211. Foell D., Wittkowski H., Roth J. Mechanisms of disease: a “DAMP” view ofinflammatory arthritis // Nat.
Clin. Pract. Rheumatol. 2007. Vol. 3, № 7. P. 382–390.212. Lotze M.T., Tracey K.J. High-mobility group box 1 protein (HMGB1): nuclearweapon in the immune arsenal // Nat. Rev. Immunol. 2005. Vol. 5, № 4. P. 331–342.120213. Yan W.X. et al. Mast cell and monocyte recruitment by S100A12 and its hingedomain // J. Biol. Chem. 2008. Vol. 283, № 19. P. 13035–13043.214. Yang H., Reinherz E.L. CD2BP1 modulates CD2-dependent T cell activation vialinkage to protein tyrosine phosphatase (PTP)-PEST // J. Immunol.
Baltim. Md1950. 2006. Vol. 176, № 10. P. 5898–5907.215. Yeh C.H. et al. Requirement for p38 and p44/p42 mitogen-activated protein kinasesin RAGE-mediated nuclear factor-kappaB transcriptional activation and cytokinesecretion // Diabetes. 2001. Vol. 50, № 6. P. 1495–1504.216. Foell D. The Mediator S100a12 Is Critically Involved in Early InflammatoryEvents of Inflammatory Bowel Disease // Gastroenterology.
2009. Vol. 136, № 5.217. Newton R.A., Hogg N. The human S100 protein MRP-14 is a novel activator of thebeta 2 integrin Mac-1 on neutrophils // J. Immunol. Baltim. Md 1950. 1998. Vol.160, № 3. P. 1427–1435.218. Goyette J. et al. Pleiotropic roles of S100A12 in coronary atherosclerotic plaqueformation and rupture // J. Immunol. Baltim. Md 1950.
2009. Vol. 183, № 1. P.593–603.219. Wittkowski H. et al. S100A12 is a novel molecular marker differentiating systemiconset juvenile idiopathic arthritis from other causes of fever of unknown origin //Arthritis Rheum. 2008. Vol. 58, № 12. P. 3924–3931.220. Kallinich T. et al. Neutrophil-derived S100A12 as novel biomarker of inflammationin familial Mediterranean fever // Ann. Rheum.
Dis. 2010. Vol. 69, № 4. P. 677–682.221. Kuemmerle-Deschner J.B. et al. Efficacy and safety of anakinra therapy in pediatricand adult patients with the autoinflammatory Muckle-Wells syndrome // ArthritisRheum. 2011. Vol. 63, № 3. P. 840–849.222. Foell D. et al. Monitoring neutrophil activation in juvenile rheumatoid arthritis byS100A12 serum concentrations // Arthritis Rheum. 2004. Vol. 50, № 4. P. 1286–1295.121223. Schmidt A.M.