Диссертация (1154770), страница 20
Текст из файла (страница 20)
2006. Vol.116, № 8. P. 2262–2271.115. McGonagle D. et al. Management of treatment resistant inflammation of acute onchronic tophaceous gout with anakinra // Ann. Rheum. Dis. 2007. Vol. 66, № 12. P.1683–1684.116. So A. et al. A pilot study of IL-1 inhibition by anakinra in acute gout // ArthritisRes. Ther. 2007. Vol. 9, № 2. P. R28.117. Perkins R.C. et al. Human alveolar macrophage cytokine release in response to invitro and in vivo asbestos exposure // Exp. Lung Res. 1993. Vol. 19, № 1. P. 55–65.118. Dostert C. et al. Innate immune activation through Nalp3 inflammasome sensing ofasbestos and silica // Science.
2008. Vol. 320, № 5876. P. 674–677.119. Cassel S.L. et al. The Nalp3 inflammasome is essential for the development ofsilicosis // Proc. Natl. Acad. Sci. U. S. A. 2008. Vol. 105, № 26. P. 9035–9040.120. Hornung V. et al. Silica crystals and aluminum salts activate the NALP3inflammasome through phagosomal destabilization // Nat. Immunol. 2008. Vol. 9,№ 8. P. 847–856.121. Halle A. et al. The NALP3 inflammasome is involved in the innate immuneresponse to amyloid-beta // Nat. Immunol. 2008. Vol.
9, № 8. P. 857–865.122. Lawson W.E., Loyd J.E. The genetic approach in pulmonary fibrosis: can it provideclues to this complex disease? // Proc. Am. Thorac. Soc. 2006. Vol. 3, № 4. P. 345–349.123. Whyte M. et al. Increased risk of fibrosing alveolitis associated with interleukin-1receptor antagonist and tumor necrosis factor-alpha gene polymorphisms // Am.
J.Respir. Crit. Care Med. 2000. Vol. 162, № 2 Pt 1. P. 755–758.124. Gasse P. et al. IL-1R1/MyD88 signaling and the inflammasome are essential inpulmonary inflammation and fibrosis in mice // J. Clin. Invest. 2007. Vol. 117, №12. P. 3786–3799.125. Spranger J. et al. Inflammatory cytokines and the risk to develop type 2 diabetes:results of the prospective population-based European Prospective Investigation into112Cancer and Nutrition (EPIC)-Potsdam Study // Diabetes.
2003. Vol. 52, № 3. P.812–817.126. Maedler K. et al. Glucose-induced beta cell production of IL-1beta contributes toglucotoxicity in human pancreatic islets // J. Clin. Invest. 2002. Vol. 110, № 6. P.851–860.127. Sauter N.S. et al. The antiinflammatory cytokine interleukin-1 receptor antagonistprotects from high-fat diet-induced hyperglycemia // Endocrinology.
2008. Vol.149, № 5. P. 2208–2218.128. Larsen C.M. et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus // N.Engl. J. Med. 2007. Vol. 356, № 15. P. 1517–1526.129. Hugot J.P. et al. Association of NOD2 leucine-rich repeat variants withsusceptibility to Crohn’s disease // Nature. 2001. Vol.
411, № 6837. P. 599–603.130. Ogura Y. et al. A frameshift mutation in NOD2 associated with susceptibility toCrohn’s disease // Nature. 2001. Vol. 411, № 6837. P. 603–606.131. Barrett J.C. et al. Genome-wide association defines more than 30 distinctsusceptibility loci for Crohn’s disease // Nat. Genet. 2008. Vol. 40, № 8. P. 955–962.132. Fisher S.A. et al.
Genetic determinants of ulcerative colitis include the ECM1 locusand five loci implicated in Crohn’s disease // Nat. Genet. 2008. Vol. 40, № 6. P.710–712.133. Franke A. et al. Sequence variants in IL10, ARPC2 and multiple other locicontribute to ulcerative colitis susceptibility // Nat. Genet. 2008. Vol. 40, № 11. P.1319–1323.134. Inohara N. et al. Host recognition of bacterial muramyl dipeptide mediated throughNOD2. Implications for Crohn’s disease // J. Biol.
Chem. 2003. Vol. 278, № 8. P.5509–5512.135. Fairbrother W.J. et al. The PYRIN domain: a member of the death domain-foldsuperfamily // Protein Sci. Publ. Protein Soc. 2001. Vol. 10, № 9. P. 1911–1918.136. Inohara null et al. NOD-LRR proteins: role in host-microbial interactions andinflammatory disease // Annu. Rev. Biochem. 2005.
Vol. 74. P. 355–383.113137. Lesage S. et al. CARD15/NOD2 mutational analysis and genotype-phenotypecorrelation in 612 patients with inflammatory bowel disease // Am. J. Hum. Genet.2002. Vol. 70, № 4. P. 845–857.138. Maeda S. et al. Nod2 mutation in Crohn’s disease potentiates NF-kappaB activityand IL-1beta processing // Science. 2005. Vol. 307, № 5710. P. 734–738.139. Rosé C.D. et al.
Pediatric granulomatous arthritis: an international registry //Arthritis Rheum. 2006. Vol. 54, № 10. P. 3337–3344.140. Rosé C.D. et al. NOD2-associated pediatric granulomatous arthritis, an expandingphenotype: study of an international registry and a national cohort in Spain //Arthritis Rheum. 2009. Vol. 60, № 6. P. 1797–1803.141. Rose C.D., Martin T.M., Wouters C.H. Blau syndrome revisited // Curr. Opin.Rheumatol.
2011. Vol. 23, № 5. P. 411–418.142. Albrecht M., Lengauer T., Schreiber S. Disease-associated variants in PYPAF1 andNOD2 result in similar alterations of conserved sequence // Bioinforma. Oxf. Engl.2003. Vol. 19, № 17. P. 2171–2175.143. Haas S.L. et al. Severe TNF receptor-associated periodic syndrome due to 2TNFRSF1A mutations including a new F60V substitution // Gastroenterology.2006.
Vol. 130, № 1. P. 172–178.144. Lainka E. et al. Incidence of TNFRSF1A mutations in German children:epidemiological, clinical and genetic characteristics // Rheumatol. Oxf. Engl. 2009.Vol. 48, № 8. P. 987–991.145. Stojanov S., McDermott M.F. The tumour necrosis factor receptor-associatedperiodic syndrome: current concepts // Expert Rev. Mol. Med. 2005. Vol. 7, № 22.P. 1–18.146. Hull K.M. et al. Monocytic fasciitis: a newly recognized clinical feature of tumornecrosis factor receptor dysfunction // Arthritis Rheum.
2002. Vol. 46, № 8. P.2189–2194.147. Jesus A.A. et al. TNF receptor-associated periodic syndrome (TRAPS): descriptionof a novel TNFRSF1A mutation and response to etanercept // Eur. J. Pediatr. 2008.Vol. 167, № 12. P. 1421–1425.114148. Aksentijevich I. et al. The tumor-necrosis-factor receptor-associated periodicsyndrome: new mutations in TNFRSF1A, ancestral origins, genotype-phenotypestudies, and evidence for further genetic heterogeneity of periodic fevers // Am. J.Hum. Genet.
2001. Vol. 69, № 2. P. 301–314.149. Huggins M.L. et al. Shedding of mutant tumor necrosis factor receptor superfamily1A associated with tumor necrosis factor receptor-associated periodic syndrome:differences between cell types // Arthritis Rheum. 2004. Vol. 50, № 8. P. 2651–2659.150. Todd I. et al. Mutant forms of tumour necrosis factor receptor I that occur in TNFreceptor-associated periodic syndrome retain signalling functions but showabnormal behaviour // Immunology. 2004. Vol. 113, № 1. P. 65–79.151. Simon A. et al. Concerted action of wild-type and mutant TNF receptors enhancesinflammation in TNF receptor 1-associated periodic fever syndrome // Proc.
Natl.Acad. Sci. U. S. A. 2010. Vol. 107, № 21. P. 9801–9806.152. Hull K.M. et al. The TNF receptor-associated periodic syndrome (TRAPS):emerging concepts of an autoinflammatory disorder // Medicine (Baltimore). 2002.Vol. 81, № 5. P. 349–368.153. Gattorno M. et al.
Persistent efficacy of anakinra in patients with tumor necrosisfactor receptor-associated periodic syndrome // Arthritis Rheum. 2008. Vol. 58, №5. P. 1516–1520.154. Sacré K. et al. Dramatic improvement following interleukin 1beta blockade intumor necrosis factor receptor-1-associated syndrome (TRAPS) resistant to antiTNF-alpha therapy // J. Rheumatol. 2008. Vol. 35, № 2. P. 357–358.155. Sims A.-M., Wordsworth B.P., Brown M.A.
Genetic susceptibility to ankylosingspondylitis // Curr. Mol. Med. 2004. Vol. 4, № 1. P. 13–20.156. Dangoria N.S. et al. HLA-B27 misfolding is associated with aberrantintermolecular disulfide bond formation (dimerization) in the endoplasmicreticulum // J. Biol. Chem. 2002. Vol. 277, № 26. P. 23459–23468.157. Colbert R.A. The immunobiology of HLA-B27: variations on a theme // Curr. Mol.Med. 2004. Vol. 4, № 1.
P. 21–30.115158. Tran T.M. et al. HLA-B27 in transgenic rats forms disulfide-linked heavy chainoligomers and multimers that bind to the chaperone BiP // J. Immunol. Baltim. Md1950. 2004. Vol. 172, № 8. P. 5110–5119.159. Turner M.J. et al. HLA-B27 misfolding in transgenic rats is associated withactivation of the unfolded protein response // J. Immunol.
Baltim. Md 1950. 2005.Vol. 175, № 4. P. 2438–2448.160. Layh-Schmitt G., Colbert R.A. The interleukin-23/interleukin-17 axis inspondyloarthritis // Curr. Opin. Rheumatol. 2008. Vol. 20, № 4. P. 392–397.161. Burton P.R. et al. Association scan of 14,500 nonsynonymous SNPs in fourdiseases identifies autoimmunity variants // Nat. Genet. 2007. Vol. 39, № 11.
P.1329–1337.162. Chen Z., O’Shea J.J. Th17 cells: a new fate for differentiating helper T cells //Immunol. Res. 2008. Vol. 41, № 2. P. 87–102.163. Cargill M. et al. A large-scale genetic association study confirms IL12B and leadsto the identification of IL23R as psoriasis-risk genes // Am. J. Hum. Genet.
2007.Vol. 80, № 2. P. 273–290.164. Ohali M. et al. Hypocomplementemic autosomal recessive hemolytic uremicsyndrome with decreased factor H // Pediatr. Nephrol. Berl. Ger. 1998. Vol. 12, №8. P. 619–624.165. Edwards A.O. et al. Complement factor H polymorphism and age-related maculardegeneration // Science. 2005. Vol. 308, № 5720. P. 421–424.166. Gros P., Milder F.J., Janssen B.J.C. Complement driven by conformational changes// Nat. Rev. Immunol. 2008.
Vol. 8, № 1. P. 48–58.167. Zur Stadt U. et al. Mutation spectrum in children with primary hemophagocyticlymphohistiocytosis: molecular and functional analyses of PRF1, UNC13D,STX11, and RAB27A // Hum. Mutat. 2006. Vol. 27, № 1. P. 62–68.168. Janka G.E.