Диссертация (1154389), страница 41
Текст из файла (страница 41)
– Bacu, 2002. –V. XVII (XXV). – P. 38–50.108. Braichev, G. G., Sherstyukov, V. B. On an Extremal Problem Relatedto the Completeness of a System of Exponentials in the Disk // AsianEuropean Journal of Mathematics. – 2008. – V. 1. – № 1. – P. 15–26.109. Clunie, J. On integral functions having prescribed asymptotic growth //Can.
J. Math. – 1965. – V. 17. – P. 396–404.110. Clunie, J., Kövari, T. On integral functions having prescribed asymptoticgrowth II // Can. J. Math. – 1968. – V. 20. – P. 7–20.111. Earl, J. P., Hayman, W. K. Smooth majorants for functions of arbitrarilyrapid growth // Math.
Proc. Camb. Phil. Soc. – 1991. – V. 109. – № 3. –P. 565–569.112. Eremenko, A., Yuditskii, P. An extremal problem for a class of entirefunctions of exponential type// arXiv: 0807.2054V1 [math. CV] 13 Jul 2008.265113. Filevych, P. V. On the growth of the maximum of the modulus of an entirefunction on a sequence // Ukrainian mathematical Journal. – 2002.
– V. 54.– № 8. – P. 1386–1392.114. Freedman, A. R., Sumber, J. J., Raphael, V. Some Cesáro type ofSummability Spaces // Proc. London Math. Soc. – 1978. – V. 37. – P. 508–520.115. Gökhan, A., Grüngör, M., Bullut, Y. On the strong lacunary convergenceand strong Cesáro summability of sequences of real-valued functions //Applied Siences. – 2006. – V. 8. – № 1.
– P. 70–77.116. Gray, A, Shah, S. M. A note on entire functions and conjecture of Erdös// Bull. of the Amer. Math. Soc. – 1963. – V. 69. – № 4. – P. 573–577.117. Gray, A., Shah, S. M. Holomorphic functions with gap power series. III //J. Math. Mech. – 1966. – V. 16. – P. 297–310.118. Hadamard, J. Essai d‘étude des fonctions données par leur dévéloppementde Taylor // J. Math. Pure et Appl. – 1892. – V. 8. – Ser. 4. – P. 154–186.119. Hadamard, J.Etude sur les propriétés des fonctions entières eten particulier d’une fonction considérée par Riemann // Journal demathématiques pures et appliquées 4e série. – 1893.
– V. 9. – P. 171–215.120. Hayman, W. K. Note on Hadamard’s convexity theorem // Entire functionsand related parts of analysis. Proceedings of Symposia in Pure Mathematics:AMS. – Providence. – 1968. – V. 11. – P. 210–213.121. Horowitz, C., Korenblum, B., Pinchuk, B. Sampling sequences for A−∞ //Michigan Math. J.
– 1997. –V. 44. – № 2. – P. 389–398.122. Iyer, V. G. On effective sets of points in relation to integral functions //Trans. Amer. Math. Soc. – 1937. – V. 42. – P. 358–365.123. Kiselman, Ch. O. Order and type as measure of growth for convex or entirefunctions // Proceedings of London Math. Soc. – 1983.
– V. 66. – № 3. –P. 152–186.124. Kjellberg, B. The convexity theorem of Hadamard–Hayman // Proceedingsof Symposium at the Royal Instute of Technolodgy in june 1973. – P. 87114. (The Royal Instute of Technology, Stockholm, 1974). Mathematics. –V. 11. – P. 210–213.266125.
Komatsu, H. Ultradistributions I. Structure theorems and a caractersations// J. Fac. Sci. Univ. Tokyo. Sec IA, Math. – 1973. – V. 20. – № 1. – P. 25–105.126. Kwong, M. K. On Hospital-style rules for monotonicity and oscillation //arXiv: 1502.07805v1 [math.CA] 27 Feb 2015.127. Lindelöf, E. Sur la détermination de la croissance des fonctions entiéresdéfinies par un development de Taylor // Bull. Soc.
Math. – 1903. – V. 27.– № 1. – P. 213–226.128. Lindelöf, E. Mémoire sur la théorie des fonctions entiéres de genre fini. –Fennicæ: Acta Soc. Sc. Fennicæ, 1903. – 79 p.129. Malliavin, P., Rubel, L. A. On small entire functions of exponential typewith given zeros // Bull. Soc. Math.
France. – 1961. – V. 89. – P. 175–206.130. Murai, T. The boundary behaviour of Hadamard lacunary series // NagoyaMath. J. – 1983. – V. 89. – P. 65–76.131. Nachbin, L. An extension of the notion of integral functions of the finiteexponential type // Anais Acad. Brasil. Ciencias. – 1944. – V.
16. – P. 143–147.132. Parolya, M. I., Sheremeta, M. M. Estimates from below for characteristicfunctions of probability laws // Matematychni studiı̈. – 2013. – V. 39. –№ 1. – P. 54–66.133. Pfluger, A. Die Wertverteilung und das Verhalten von Betrag undArgument einer speziellen Klasse analytischer Funktionen. I // Comm.Math. Helv. – 1938. – V.
11. – P. 180–213.134. Pfluger, A. Die Wertverteilung und das Verhalten von Betrag undArgument einer speziellen Klasse analytischer Funktionen. II // Comm.Math. Helv. – 1939. – V. 12. – P. 25–69.135. Phragmen, E. et Lindelöf, E. Sur une extension d’un principe classiquede l’analyse et sur quelques propriétés des fonctions monogénes dans levoisinage d’un point singulier // Acta Mathematica. – 1908.
– V. 31. –P. 381–406.136. Pinelis, I. L’Hospital type rules for monotonicity, with application //Journal in Pure and Applide Mathematics. – 2002. – V. 3. – is. 1. – art. 5.267137. Platsydem, M. I., Sheremeta, M. M. Estimates for the maximum modulusof analytic characteristic functions of probability laws on some sequences// Matematychni studiı̈. – 2014. – V. 42. – № 2.
– P. 149–159.138. Poincaré, H. Sur les fonctions intieres // Bulletin de la S.M.F. – 1883. –V. 11. – P. 136–144.139. Redheffer, R. M. On even entire functions with zeros having a density //Trans. Amer. Math. Soc. – 1954. – V. 77. – P. 32–61.140. Roumieu, C. Sur quelques extension de la notion de distribution // Ann.Sci. Ecole Norm. Sup. 3 Sér. – 1960. – V. 77. – № 1. – P. 41–121.141. Shah, S. M. Trigonometric series with quasi-monotone coefficients // Proc.Amer. Math. Soc.
– 1962. – V. 13. – P. 266–273.142. Stolz, O. Vorlesungen über allgemeine Arithmetik: nach den NeuenAnsichten // Leipzig: Teubners. – 1885. – P. 173–175.143. Valiron, G. Sur les fonctions entières d’ordre nul et d’ordre fini et enparticulier les fonctions à correspondance régulière // Annales de la facultedes sciences de Toulouse Ser. 3. – 1913. – T. 5. – P. 117–257.144.
Valiron, G. Lecture on the General Theory of Integrаl Functions. –Toulouse: Private, 1923. – 234 p.268.