Диссертация (1154314), страница 21
Текст из файла (страница 21)
– P. 1506–1513110. Sarnak M.J., Levey A.S. Cardiovascular disease and chronic renal disease: Anew paradigm // AJKD. – 2000. – Vol. 35(4). – P. 117-131 DOI:http://dx.doi.org/10.1016/S0272-6386(00)70239-3111. Tilman B., Drueke J., Massy Z., A. Circulating Klotho levels: clinicalrelevance relationship with tissue Klotho expression // Kidney Int. – 2013. – Vol.83(1). – P. 13-15.112. Saito H., Kusano K., Kinosaki M. et al .Human fibroblast growth factor-23mutants suppress Na+-dependent phosphateco-transport activity and 1 alpha, 25dihydroxyvitamin D3 production // J. Biol. Chem. 2003.
– Vol. 278. – P. 2206–2211130113. Ben-Dov I.Z., Galitzer H., Lavi-Moshayoff V. et al. The parathyroid is atarget organ for FGF-23 in rats // J. Clin. Invest. – 2007. – Vol. 117. – P. 4003–4008114. Krajisnik T., Bjorklund P., Marsell R. et al.
Fibroblast growth factor-23regulates parathyroid hormone and 1 alpha-hydroxylase expression in culturedparathyroid cells // J. Endocrinol. 2007. – Vol. 195. – P. 125–131115. Kawata T., Imanishi Y., Kobayashi K. et al. Parathyroid hormone regulatesfibroblast growth factor-23 in a mouse model of primary hyperparathyroidism // J.Am. Soc. Nephrol. – 2007-. –Vol. 18.
– P. 2683–2688116. Shigematsi T. et al. Possible involment of circulation FGF-23 in thedevelopment of secondary hyperparathyroidism associated with renal insufficiency// J. Circulation. – 2009. – Vol. 119. – P. 2545-2552117. Roman I. et al. FGF-23 and its role in phosphate homeostasis // Eur. J.
End.2010. – Vol. 162. – P. 1-101118. Seiler S., Heine G.H., Fliser D. Clinical relevance of FGF-23 in chronickidney disease // Kidney Internat. – 2009. – Vol. 114. – P. 34–42119. Bergwitz C., Jüppner H. Regulation of phosphate homeostasis by PTH,vitamin D, and FGF 23 // Ann. Rev. Med. – 2010. – Vol. 61. – P. 91–104120. Orlando M., Gutie`rrez O.M. Fibroblast Growth Factor 23 and LeftVentricular Hypertrophy in Chronic Kidney Disease // Circulation. – 2009. – Vol.119. – P. 2545-2552121.
Izquierdo M. C., Perez-Gomez M.V., Sanchez-Niño M.D. et al. Klotho,phosphate and inflammation/ageing in chronic kidney disease // Nephrol. Dial.Transplant. – 2012. – Vol. 27(4). - iv6-iv8122. Fliser D., Kollerits B., Neyer U. et al. Fibroblast Growth Factor 23 (FGF-23)predicts progression of chronic kidney disease. The Mild to Moderate KidneyDisease (MMKD) study // J.
Am. Soc. Nephrol. – 2007. – Vol. 18(9). – P. 2601–2608123. Nagano N., Miyata S., Abe M. et al. Effect of manipulating serumphosphorus with phosphate binder on circulating PTH and FGF23 in renal failurerats // Kidney Inter. – 2006. – Vol.
69(3). – P. 531–537124. Милованова Л.Ю., Милованов Ю.С.. Крюкова Д.В. исоавт.Клиническое значение фактора роста фибробластов-23 (FGF-23) и белкаKlotho при хронической болезни почек // Клин. фармакол. и терапия. – 2013.– Т. 22(4). – C. 1-5125. Cozzolino M., Galassi A., Gallieni M., Brancaccio D. Pathogenesis andtreatment of secondary hyperparathyroidism in dialysis patients: the role ofparicalcito //.
Curr. Vasc. Pharmacol. – 2008. – Vol. 6(2). – P. 148–153126. Viaene L., Behets G., Claes K., Meijers B., Blochi F., Brandenburg P.,DHaese P.C. Sclerostin: another bone-related protein related to all-crouse mortalityin hemodialysis?// Nephrol. Dial. Transplant. – 2013. – Vol. 28(12). – P. 30243030131127. Vervloet M., Larsson T. Fibroblast growth factor-23 and Klotho in chronickidney disease // Kidney Inter Suppl.
– 2011. – Vol. 1. – P. 130–135128. Craver L., Marco M.P., Martinez I. et al. Mineral metabolism parametersthroughout chronic kidney disease stages 1-5-achievement of K/DOQI targetranges // Nephrol. Dial. Transplant. – 2007. – Vol. 22. – P. 1171-1176129. Adijiang A., Shimizi H., Higuchi Y. et al. Indoxyl sulfate reduces Klothoexpression and promotes senescence in the kidneys of hypertensive rats // J. Ren.Nutr. – 2011. – Vol.
21. – P. 105-109130. Yeun J.Y. at al. C-Reactive protein predicts all-cause and cardiovascularmortality in hemodialysis patients // Am. J. Kidney Dis. – 2000. – Vol. 35. – P.469-476132131. Maekawa Y. et al. Klotho suppresses TNF-alpha-induced expression ofadhesion molecules in the endothelium and attenuates NF-kappaB activation.Endocrine // 2009. – Vol. 35(3). – P. 341–346132. Nasrallah M., El-Shehaby A., Salem M. et al.
Fibroblast growth factor-23(FGF-23) is independently correlated to aortic calcification in haemodialysispatients // Nephrol. Dial. Transplant. – 2010. – Vol. 25. – P. 2679–2685133. Lim K., Lu T.S., Zehnder D. et al. Development of Klotho-FGFR1/3Dependent Resistance to FGF-23 in Human Aortic Smooth Muscle Cells Exposedto Calcifying Stress // J. Am.
Soc. Nephrol. – 2010. – Vol. 21. – P. 140A134. Faul C., Ansel P. et al. FGF-23 induces left ventricular rhypertrophy // J. Clin.Invest. – 2011. – Vol. 121(11). – P. 4393–4408135. Kardami E.et al. Fibroblast growth factor 23 isoforms and cardiachypertrophy // Cardiovasc. Res.
– 2004. – Vol. 63(3). – P. 458–466136. Negishi K., Kobayashi M., Ochiai I. et al. Association between fibroblastgrowth factor 23 and left ventricular hypertrophy in maintenance hemodialysispatients. Comparison with B-type natriuretic peptide and cardiac troponin T // Circ.J. – 2010. – Vol. 74(12). – P. 2734–2740137. Faul C., Morkin E. et al .Control of cardiacmyosin heavy chain geneexpression // Microsc. Res. Tech. – 2000. – Vol. 50(6).
– P. 522–531138. Шутов Е. В.. Значение фактора роста фибробластов-23 у больныххронической болезнью почек - обзор современных исследований // Лечащийврач. – 2012. – N. 8. – C. 12-18139. Okuno S., Ishimura E., Kitatani K., Fujino Y. et al. Presence of abdominalaortic calcification is significantly associated with all-cause and cardiovascularmortality in maintenance hemodialysis patients // Am. J.
Kidney Dis. – 2007. –Vol. 49. – P. 417–425140. Di Marco G.S., Reuter S., Kentrup D. et al. Treatment of established leftventricular hypertrophy with fibroblast growth factor receptor blockade in ananimal model of CKD // Nephrol. Dial. Transplant. – 2014. – Vol. 10. – P. 1-8141.
Smith K., Defilipp C., Isakova T., et al. Fibroblast growth factor-23, highsensitivity cardiac troponin, and left ventricular hypertrophy in CKD // Am. J.Kidney Dis. – 2013. – Vol. 61(1). – P. 67-73132142. Cozzolino M., Mazzaferro S., Pugliese F., Brancaccio D.
Vascularcalcification and uremia: what do we know? // Am. J. Nephrol. – 2008. – Vol.28(2). – P. 339–346143. London G.M. Cardiovascular calcifications in uremic patients: clinical impacton cardiovascular function // J. Am. Soc. Nephrol. – 2003. – Vol. 14(4). – P. 305–309144. London G.M., Guerin A.P., Marchair S.J. et al. Arterial media calcification inend-stage renal disease: impact on all-cause and cardiovascular mortality //Nephrol.
Dial. Transplant. – 2003. – Vol. 18. – P. 1731-1740145. Saab G., Whaley-Connell A., Khanna R., Sowers J.R. Therapy for the alteredmineral metabolism of chronic kidney disease: implications for vascularcalcification // Ther. Adv. Cardiovasc. Dis. – 2007. – Vol. 1.- P.107–112146. Yang H., Curinga G., Giachelli C.M. Elevated extracellular calcium levelsinduce smooth muscle cell matrix mineralization in vitro // Kidney Inter. – 2004.
–Vol. 66(6). – P. 2293–2299147. Sowers K.M., Hayden M.R. Calcific uremic arteriolopathy: pathophysiology,reactive oxygen species and therapeutic approaches // Oxid. Med. Cell . Longev. –2010. – Vol. 3. – P. 109–121148. Li X., Yang H.Y., Giachelli C.M. Role of the sodium-dependent phosphatecotransporter, Pit-1, in vascular smooth muscle cell calcification // Circulation Res.– 2006. – Vol. 98(7). – P. 905–912149. Inaba M., Okuno S., Imanishi Y.
et al. Role of fibroblast growth factor-23 inperipheral vascular calcification in non-diabetic and diabetic hemodialysis patients// Osteoporos Int. – 2006. – Vol. 17. – P. 1506–1513150. Yean G. et al. High levels of serum FGF-23 are associated with increasedmortality in long haemodialysis patients . Nephrol. Dial . Transplant. 2009; 24(9): 2792-2796151. Xie Jian, Cha S.-K., An S.-W.
et al. Cardioprotection by Klotho throughdownregulation of TRPC6 channels in the mouse heart // Nat Commun. – 2012. –Vol. 3. – P. 1238-1242152. Cha S.K., Ortega B., Kurosu H. et al. Removal of sialic acid involving Klothocauses cell-surface retention of TRPV5 channel via binding to galectin-1 // ProcNatl Acad Sci. – 200. – Vol. 105. – P. 9805–9810153. Saito Y., Nakamira T., Ohyama Y., et al.
In vivo Klotho gene deliveryprotects against endothelial dysfunction in multiple risk factor syndrome //Biochem. Biophys. Res. Commun. – 2000. – Vol. 278(2). – P. 767-772104154. Yoon H.E., Ghee J.Y., Piao S. et al. Angiotensin II blockage upregulates theexpression of Klotho, the anti-ageing gene, in an experimental model of chroniccyclosporine nephropathy // Nephrol. Dial.