Диссертация (1150742), страница 16
Текст из файла (страница 16)
Автор надеется, что результаты диссертационной работыпомогут в разработке электронных устройств на основе графена и графенсодержащих систем.112Список сокращений и обозначенийФЭС – фотоэлектронная спектроскопия (PES)РФЭС – рентгеновская фотоэлектронная спектроскопия (XPS)УФЭС – ультрафиолетовая фотоэлектронная спектроскопия (UPS)ФЭСУР – фотоэлектронная спектроскопия с угловым разрешением (ARPES)ФЭСУР со спиновым разрешением – фотоэлектронная спектроскопия с угловым и спиновым разрешением (SARPES)ДМЭ – дифракция медленных электронов (LEED)CТМ – сканирующая туннельная микроскопия или сканирующий туннельный микроскоп (STM)ЗБ – зона Бриллюэна (BZ)PES – Photoelectron Spectroscopy (ФЭС)XPS – X-ray Photoelectron Spectroscopy (РФЭС)SEM – Scanning Electron Microscopy (СЭМ)SARPES – Spin- and Angle- Resolved Photoemission Spectroscopy (ФЭСУРсо спиновым разрешением)ARPES – Angle-Resolved Photoelectron Spectroscopy(ФЭСУР)DFT – Density Functional TheoryCVD – Chemical Vapor Deposition – первичная энергия электронного пучка (например, для получения картины ДМЭ) – уровень Ферми – точка ДиракаΔ – величина спин-орбитального ресщепления113ML – монослой (слой моноатомной толщины)MG – графен (graphene)ВОПГ – высоко ориентированный пиролитический графит (HOPG)/ – “на поверхности” (используется для обозначения слоистых систем, например, MG/Bi – графен на поверхности Bi)отн.
ед. –произвольная единица измерения интенсивности в спектрах (arb.un.)СИ – синхротронное излучение114Литература[1] K.S. Novoselov, A.K. Geim, S.V. Morozov et al. Two-dimensional gasof massless Dirac fermions in graphene // Nature. — 2005. — Vol.438. — Pp. 197–200.[2] A.K. Geim, K.S. Novoselov. The rise of graphene // Nature Materials. — 2007. — Vol.
6. — Pp. 183–191.[3] A.H. Castro Neto, F. Guinea, N.M.R. Peres et al. The electronic properties of graphene // Reviews of Modern Physics. — 2009. — Vol. 81. —Pp. 109–162.[4] A.K. Geim, A.H. MacDonald. Graphene: exploring carbon flatland //Physics Today. — 2007. — Vol. 60, no. 8. — Pp. 35–41.[5] M.I. Katsnelson, K.S. Novoselov, A.K.
Geim. Chiral tunnelling and theKlein paradox in graphene // Nature Physics. — 2006. — Vol. 2. —Pp. 620–625.[6] F. Xia, M. Thomas, A. Lin, Yu. Valdes-Garcia, P. Avouris. Ultrafastgraphene photodetector // Nature Nanotechnology. — 2009. — Vol. 4. —Pp. 839–843.[7] H.W.Ch. Postma. Rapid sequencing of individual DNA molecules ingraphene nanogaps // Nano Letters. — 2010. — Vol. 10, no. 2. —Pp.
420–425.[8] E.Yu. Kataev, D.I. Itkis, A.V Fedorov et al. Oxygen reduction by lithiated graphene and graphene-based materials // ACS Nano. — 2015. —Vol. 9, no. 1. — Pp. 320–326.115[9] S. Cho, Y. Chen, M.S. Fuhrer. Gate-tunable graphene spin valve //Applied Physics Letters.
— 2007. — Vol. 91, no. 12. — Pp. 123105–08.[10] Z. Chen, Yu. Lin, M.J Rooks, P. Avouris. Graphene nano-ribbon electronics // Physica E: Low-dimensional Systems and Nanostructures. —2007. — Vol. 40, no. 2. — Pp. 228–232.[11] E. Voloshina, Yu. Dedkov. Graphene on metallic surfaces: problemsand perspectives // Physical Chemistry Chemical Physics. — 2012. —Vol. 14, no.
39. — Pp. 13502–13514.[12] M. Batzill. The surface science of graphene: Metal interfaces, CVDsynthesis, nanoribbons, chemical modifications, and defects // SurfaceScience Reports. — 2012. — Vol. 67, no. 3–4. — Pp. 83–115.[13] J. Wintterlin, M.L. Bocquet. Graphene on metal surfaces // SurfaceScience. — 2009. — Vol. 603, no. 10–12. — Pp. 1841–1852.[14] D. Marchenko, A.
Varykhalov, M.R. Scholz et al. Giant Rashba splitting in graphene due to hybridization with gold // Nature Communications. — 2012. — Vol. 3. — Pp. 1232–1238.[15] A.M. Shikin, A.G. Rybkin, D. Marchenko et al. Induced spin-orbitsplitting in graphene: the role of atomic number of the intercalatedmetal and – hybridization // New Journal of Physics.
— 2013. —Vol. 15, no. 1. — P. 013016.[16] A.A. Popova, A.M. Shikin, A.G. Rybkin et al. The role of the covalent interaction in the formation of the electronic structure of Au- andCu-intercalated graphene on Ni(111) // Physics of the Solid State. —2011.
— Vol. 53, no. 12. — Pp. 2539–2544.116[17] O. Rader, A. Varykhalov, J. Sánchez-Barriga et al. Is there a Rashbaeffect in graphene on 3 ferromagnets? // Physical Review Letters. —2009. — Vol. 102, no. 5. — Pp. 057602–06.[18] A.M. Shikin, G.V. Prudnikova, V.K. Adamchuk et al. Surface intercalation of gold underneath a graphite monolayer on Ni(111) studied byangle-resolved photoemission and high-resolution electron-energy-lossspectroscopy // Physical Review B - Condensed Matter and MaterialsPhysics. — 2000. — Vol. 62. — Pp. 13202–13208.[19] Yu.S.
Dedkov, A.M. Shikin, V.K. Adamchuk et al. Intercalation of copper underneath a monolayer of graphite on Ni(111) // Physical ReviewB. — 2001. — Vol. 64. — Pp. 035405–11.[20] A.M. Shikin, V.K. Adamchuk, K.H. Rieder. Formation of quasi-freegraphene on the Ni(111) surface with intercalated Cu, Ag, and Aulayers // Physics of the Solid State. — 2009. — Vol. 51, no. 11. —Pp. 2390–2400.[21] A. Varykhalov, J. Sánchez-Barriga, A.M. Shikin et al. Electronic andmagnetic properties of quasifreestanding graphene on Ni // PhysicalReview Letters.
— 2008. — Vol. 101. — Pp. 157601–05.[22] A. Varykhalov, M.R. Scholz, T.K. Kim, O. Rader. Effect of noble-metal contacts on doping and band gap of graphene // Physical ReviewB - Condensed Matter and Materials Physics. — 2010. — Vol. 82. —Pp. 121101–05.[23] K.V. Emtsev, K.
Bostwick, A. Karsten Horn, J. Jobst et al. Towardswafer-size graphene layers by atmospheric pressure graphitization ofsilicon carbide // Nature Materials. — 2009. — Vol. 8. — Pp. 203–207.117[24] K.V. Emtsev, F. Speck, Th. Seyller et al. Interaction, growth, and ordering of epitaxial graphene on SiC0001 surfaces: A comparative photoelectron spectroscopy study // Physical Review B - Condensed Matterand Materials Physics. — 2008. — Vol. 77. — Pp. 155303–13.[25] D.Yu.
Usachov, A.V Fedorov, O.Yu. Vilkov et al. The chemistry of imperfections in N-graphene // Nano Letters. — 2014. — Vol. 14, no. 9. —Pp. 4982–4988.[26] D.Yu. Usachov, A.V Fedorov, O.Yu. Vilkov et al. Formation and lithiumdoping of graphene on the surface of cobalt silicide // Physics of theSolid State.
— 2015. — Vol. 57, no. 5. — Pp. 1040–1047.[27] J. Lahiri, T. Miller, L. Adamska et al. Graphene growth on Ni(111)by transformation of a surface carbide // Nano Letters. — 2011. —Vol. 11. — Pp. 518–522.[28] L.L. Patera, R.S. Weatherup, R. Blume et al. In situ observations ofthe atomistic mechanisms of Ni catalyzed low temperature graphenegrowth // ACS Nano. — 2013.
— Vol. 7. — Pp. 7901–7912.[29] Q. Yu, J. Lian, S. Siriponglert et al. Graphene segregated on Ni surfacesand transferred to insulators // Applied Physics Letters. — 2008. —Vol. 93, no. 11. — Pp. 113103–06.[30] G. Odahara, S. Otani, C. Oshima et al. In situ observation of graphenegrowth on Ni(111) // Surface Science. — 2011. — Vol. 605, no. 11—12. —Pp. 1095–1098.[31] E.V. Zhizhin, A. Varykhalov, A.G. Rybkin et al. Spin splitting of Diracfermions in graphene on Ni intercalated with alloy of Bi and Au //Carbon.
— 2015. — Vol. 93. — Pp. 984–996.118[32] E.V. Zhizhin, D.A. Pudikov, A.G. Rybkin et al. Synthesis and electronicstructure of graphene on a nickel film adsorbed on graphite // Physicsof the Solid State. — 2015. — Vol. 57, no. 9. — Pp. 1888–1894.[33] V.O. Shevelev, E.V. Zhizhin, D.A. Pudikov et al. Synthesis of graphenethrough the carbidization of Gd on pyrolytic graphite // Physics of theSolid State. — 2015. — Vol. 57, no. 11. — Pp. 2342–2347.[34] E.V. Zhizhin, A.A. Popova, D.E.
Marchenko et al. Modification ofinduced spin-orbit splitting of the states of graphene during the jointintercalation of Bi and noble metals // Bulletin of the Russian Academyof Sciences: Physics. — 2013. — Vol. 77, no. 1. — Pp. 39–42.[35] A Castro Neto, F. Guinea, N.M. Peres. Drawing conclusions fromgraphene // Physics World. — 1947. — Vol. 19, no. 11. — Pp. 1–5.[36] P.
Trucano, R. Chen. Structure of graphite by neutron diffraction //Nature. — 1975. — Vol. 258. — Pp. 136–137.[37] D.R. Cooper, B. D′ Anjou, N. Ghattamaneni et al. Experimental review of graphene // ISRN Condensed Matter Physics. — 2012. — Vol.2012. — Pp. 1–56.[38] P.R. Wallace.
The band theory of graphite // Physical Review. —1947. — Vol. 71, no. 9. — Pp. 622–634.[39] B. Partoens, F.M. Peeters. From graphene to graphite: Electronic structure around the point // Physical Review B - Condensed Matter andMaterials Physics. — 2006. — Vol. 74. — Pp. 075404–15.[40] C. Riedl, U. Starke, J.
Bernhardt et al. Structural properties ofthe graphene-SiC(0001) interface as a key for the preparation of ho119mogeneous large-terrace graphene surfaces // Physical Review B Condensed Matter and Materials Physics. — 2007. — Vol. 76. —Pp. 245406–14.[41] Th. Seyller, K.V. Emtsev, K. Gao et al. Structural and electronic properties of graphite layers grown on SiC(0001) // Surface Science. —2006. — Vol. 600, no.
18. — Pp. 3906–3911.[42] K.S. Novoselov, A.K. Geim, S.V. Morozov et al. Electric field effectin atomically thin carbon films // Science. — 2004. — Vol. 306, no.5696. — Pp. 666–669.[43] J.C. Shelton, H.R. Patil, J.M. Blakely. Equilibrium segregation of carbon to a nickel (111) surface: A surface phase transition // SurfaceScience. — 1974. — Vol. 43. — Pp.
493–520.[44] M. Eizenberg, J.M. Blakely. Carbon monolayer phase condensation onNi(111) // Surface Science. — 1979. — Vol. 82. — Pp. 228–236.[45] C. Oshima, A. Nagashima. Ultra-thin epitaxial films of graphite andhexagonal boron nitride on solid surfaces // Journal of Physics: Condensed Matter. — 1997. — Vol. 9. — Pp. 1–20.[46] А.Я. Тонтегоде, Е.В. Рутьков.