Диссертация (1150742), страница 17
Текст из файла (страница 17)
Интеркалирование атомами двумерной графитовой пленки на металлах // Успехи физических наук. —1993. — Т. 163. — С. 57–74.[47] A.Ya. Tontegode. Carbon on transition metal surfaces // Progress inSurface Science. — 1991. — Vol. 38. — Pp. 201–429.[48] А.М. Шикин. Формирование, электронная структура и свойства120низкоразмерных структур на основе металлов. — Санкт-Петербург:ВВМ, 2011.[49] S. Watcharinyanon, C.
Virojanadara, J.R. Osieckia et al. Hydrogenintercalation of graphene grown on 6H-SiC(0001) // Surface Science. —2011. — Vol. 605. — Pp. 1662–1668.[50] S. Hüfner. Photoelectron spectroscopy: principles and applications. —Berlin–Heidelberg: Springer–Verlag, 1995.[51] А.М. Шикин. Взаимодействие фотонов и электронов с твердым телом. — Санкт-Петербург: ВВМ, 2008.[52] F.J.
Himpsel. Angle-resolved measurements of the photoemission ofelectrons in the study of solids // Advances in Physics. — 1983. —Vol. 32, no. 1. — Pp. 1–51.[53] M.P. Seah, W.A. Dench. Quantitative electron spectroscopy of surfaces:a standard data base for electron inelastic mean free paths in solids //Surface and Interface Analysis. — 1979.
— Vol. 1, no. 1. — Pp. 2–11.[54] Н. Мотт, Г. Месси. Взаимодействие фотонов и электронов с твердым телом. — Москва: Мир, 1969.[55] J. Stöhr, C. Siegmann. Magnetism. From fundamentals to nanoscaledynamics. — Berlin–Heidelberg: Springer–Verlag, 2006.[56] G.C. Burnett, T.J.
Monroe, F.B. Dunning. High-efficiency retarding-potential Mott polarization analyzer // Review of Scientific Instruments. — 1994. — Vol. 65, no. 6. — Pp. 1893–1896.[57] S. Qiao, A. Kimura, A. Harasawa et al. A new compact electron121spin polarimeter with a high efficiency // Review of Scientific Instruments.
— 1997. — Vol. 68, no. 12. — Pp. 4390–4395.[58] В.Н. Петров. Электронная Оже-спектроскопия с разрешением поспину. — Санкт-Петербург: Издательство СПбГПУ, 2007.[59] P.D. Johnson. Spin-polarized photoemission // Reports on Progress inPhysics. — 1997. — Vol. 60, no. 11. — Pp. 1217–1304.[60] F. Meier, J.H. Dil, J. Osterwalder. Measuring spin polarization vectors in angle-resolved photoemission spectroscopy // New Journal ofPhysics.
— 2009. — Vol. 11, no. 12. — Pp. 125008–29.[61] V.N. Petrov, V.V. Grebenshikov, B.D. Grachev, A.S. Kamochkin. Newcompact classical 40 kV Mott polarimeter // Review of Scientific Instruments. — 2003. — Vol. 74, no. 3. — Pp. 1278–1281.[62] Г.К. Зырянов. Эмиссия поляризованных электронов. — Ленинград:Издательство Ленинградского университета, 1991.[63] К. Оура, В.Г. Лифшиц, А.А. Саранин и др. Введение в физику поверхности.
— Москва: Наука, 2005.[64] J.G. Simmons. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film // Journalof Applied Physics. — 1963. — Vol. 34, no. 6. — Pp. 1793–1803.[65] J.G. Simmons. Low-voltage current-voltage relationship of tunnel junctions // Journal of Applied Physics. — 1963.
— Vol. 34, no. 1. —Pp. 238–239.[66] C.J. Chen. Origin of atomic resolution on metal surfaces in scanning122tunneling microscopy // Physical Review Letters. — 1990. — Vol. 65. —Pp. 448–451.[67] R. Wiesendanger. Scanning probe microscopy and spectroscopy. —Cambridge: Cambridge University Press, 1994.[68] A. Grüneis, K. Kummer, D.V. Vyalikh. Dynamics of graphene growthon a metal surface: a time-dependent photoemission study // New Journal of Physics. — 2009. — Vol. 11, no.
7. — Pp. 073050–59.[69] A.G. Starodubov, M.A. Medvetskii, A.M. Shikin, V.K. Adamchuk. Intercalation of silver atoms under a graphite monolayer on Ni(111) //Physics of the Solid State. — 2004. — Vol. 46, no. 7. — Pp. 1340–1348.[70] I.
Gierz, C. Riedl, U. Starke et al. Atomic hole doping of graphene //Nano Letters. — 2008. — Vol. 8, no. 12. — Pp. 4603–4607.[71] A.A. Rybkina, A.G. Rybkin, A.V. Fedorov et al. Interaction of graphenewith intercalated Al: The process of intercalation and specific featuresof the electronic structure of the system // Surface Science. — 2013. —Vol. 609. — Pp. 7–17.[72] A. Varykhalov, D. Marchenko, J. Sánchez-Barriga et al. IntactDirac cones at broken sublattice symmetry: Photoemission study ofgraphene on Ni and Co // Physical Review X. — 2012.
— Vol. 2. —Pp. 041017–27.[73] M.H. Kang, S.C. Jung, J.W. Park. Density functional study of the Au-intercalated graphene/Ni(111) surface // Physical Review B - CondensedMatter and Materials Physics. — 2010. — Vol. 82. — Pp. 085409–15.123[74] M. Hasegawa, K. Nishidate, T.
Hosokai, N. Yoshimoto. Electronic-structure modification of graphene on Ni(111) surface by the intercalation of a noble metal // Physical Review B - Condensed Matter andMaterials Physics. — 2013. — Vol. 87. — Pp. 085439–48.[75] C. Hsu, V. Ozolins, F. Chuang. First-principles study of Bi and Sbintercalated graphene on SiC(0001) substrate // Surface Science. —2013. — Vol. 616. — Pp. 149–154.[76] C. Weeks, J. Hu, J. Alicea et al.
Engineering a Robust Quantum SpinHall State in Graphene via Adatom Deposition // Physical Review X. —2011. — Vol. 1. — Pp. 021001–16.[77] C.L. Kane, E.J. Mele. Quantum spin Hall effect in graphene // PhysicalReview Letters. — 2005. — Vol. 95. — Pp. 226801–226805.[78] J. Hu, J. Alicea, R. Wu, M. Franz. Giant Topological Insulator Gap inGraphene with 5 Adatoms // Physical Review Letters. — 2012. — Vol.109.
— Pp. 266801–06.[79] Y. Li, P. Tang, P. Chen et al. Topological insulators in transition-metalintercalated graphene: The role of electrons in significantly increasing the spin-orbit gap // Physical Review B - Condensed Matter andMaterials Physics. — 2013. — Vol. 87. — Pp. 245127–32.[80] A. Bostwick, T. Ohta, J. McChesney et al. Symmetry breaking in fewlayer graphene films // New Journal of Physics. — 2007. — Vol. 9,no. 10. — Pp. 385–407.[81] S.Y.
Zhou, G.H. Gweon, G.V. Fedorov et al. Substrate-induced bandgapopening in epitaxial graphene // Nature Materials. — 2007. — Vol. 6. —Pp. 770–775.124[82] F. Calleja, H. Ochoa, M. Garnica et al. Spatial variation of a giantspin-orbit effect induces electron confinement in graphene on Pb islands // Nature Physics.
— 2015. — Vol. 11, no. 1. — Pp. 43–47.[83] I.I. Klimovskikh, S.S. Tsirkin, A.G. Rybkin et al. Nontrivial spin structure of graphene on Pt(111) at the Fermi level due to spin-dependenthybridization // Physical Review B - Condensed Matter and MaterialsPhysics. — 2014. — Vol. 90, no. 23. — Pp. 235431–41.[84] E.L. Shirley, L.J. Terminello, A. Santoni, F.J. Himpsel. Brillouinzone-selection effects in graphite photoelectron angular distributions //Physical Review B - Condensed Matter and Materials Physics. —1995.
— Vol. 51. — Pp. 13614–13622.[85] X. Mingsheng, F. Daisuke, S. Keisuke et al. Production of extendedsingle-layer graphene // ACS Nano. — 2011. — Vol. 5. — Pp. 1522–1528.[86] D. Yang, E. Sacher. Carbon 1s X-ray photoemission line shape analysisof highly oriented pyrolytic graphite: The influence of structural damageon peak asymmetry // Langmuir. — 2006.
— Vol. 22. — Pp. 860–862.[87] F. Ravani, K. Papagelis, V. Dracopoulos et al. Graphene productionby dissociation of camphor molecules on nickel substrate // Thin SolidFilms. — 2013. — Vol. 527. — Pp. 31–37.[88] V.K. Portnoi, A.V. Leonov, S.N. Mudretsova, S.A. Fedotov.
Formationof nickel carbide in the course of deformation treatment of Ni-C mixtures // Physics of Metals and Metallography. — 2010. — Vol. 109. —Pp. 153–161.[89] A.M. Shikin, D. Farías, K.H. Rieder. Phonon stiffening induced by125copper intercalation in monolayer graphite on Ni(111) // EurophysicsLetters. — 1998. — Vol. 44, no. 1. — Pp. 44–49.[90] A. Wiltner, Ch. Linsmeier. Thermally induced reaction and diffusion ofcarbon films on Ni(111) and Ni(100) // Surface Science. — 2008. —Vol. 602.
— Pp. 3564–3572.[91] R.S. Weatherup, B.C. Bayer, R. Blume et al. In situ characterization ofalloy catalysts for low-temperature graphene growth // Nano Letters. —2011. — Vol. 11. — Pp. 4154–4160.[92] P. Jacobson, S. Stöger, A. Garhofer et al. Nickel carbide as a source ofgrain rotation in epitaxial graphene // ACS Nano.
— 2012. — Vol. 6. —Pp. 3564–3572.[93] G.V. Samsonov, G.Sh. Upadhaja, V.S. Neshpor. Physical material carbides. — Kiev: Naukova dumka, 1974.[94] A. Nagashima, K. Nuka, K. Satoh et al. Electronic structure of monolayer graphite on some transition metal carbide surfaces // SurfaceScience. — 1993. — Vol. 287–288, Part 2.
— Pp. 609–613.[95] A. Nagashima, K. Nuka, H. Itoh et al. Electronic states of monolayergraphite formed on TiC(111) surface // Surface Science. — 1993. — Vol.291, no. 1–2. — Pp. 93–98.[96] A.M. Shikin, S.L. Molodtsov, A.G. Vyatkin et al. Electronic structure of surface compounds formed under thermal annealing of theLa/graphite interface // Surface Science. — 1999. — Vol. 429, no.1–3. — Pp. 287–297.126[97] A.M. Shikin, V.K. Adamchuk, S. Siebentritt et al. Formation ofa surface graphite monolayer and intercalationlike compound in theLa/graphite system under thermal annealing // Physical Review B- Condensed Matter and Materials Physics.
— 2000. — Vol. 61. —Pp. 7752–7759.[98] S.A. Gorovikov, A.M. Shikin, G.V. Prudnikova et al. Formation ofsurface intercalation compounds at Gd(Dy)/graphite interfaces underthermal annealing // Surface Science. — 2001. — Vol. 474, no. 1–3. —Pp. 98–106.[99] S.I. Bozhko, A.N. Chaika, A.M. Ionov, U.
Valbusa. Interface formationin the Gd/HOPG and Dy/HOPG systems: Electron spectroscopy studies // Journal of Alloys and Compounds. — 2001. — Vol. 323–324. —Pp. 701–706.[100] S.L. Molodtsov. Electronic structure of graphite intercalated with 4and 5 elements // Journal of Electron Spectroscopy and Related Phenomena. — 1998. — Vol. 96, no. 1–3.
— Pp. 157–170..