Диссертация (1150447), страница 23
Текст из файла (страница 23)
Lett. – 2015. – Vol.12(11). – P. 115404.113[85] Н.Н. Розанов, Э.Г. Федоров, А.А. Мацковский. Параметрическая генерация излучения вдинамическом резонаторе с частотной дисперсией // Квантовая электроника. – 2016. –Vol. 46(1). – P. 13 – 15.[86] J.A. Giordmaine, R.C. Miller. Tunable Coherent Parametric Oscillation in LiN bO3 at OpticalFrequencies // Phys. Rev. Lett. – 1965.
– Vol. 14(24). – P. 973–976.[87] Z.Y. Ou, S.F. Pereira, H.J. Kimble, K.C. Peng. Realization of the Einstein-Podolsky-Rosenparadox for continuous variables // Phys. Rev. Lett. – 1992. – Vol. 68(25). – P. 3663–3666.[88] R. E. Slusher, L. W. Hollberg, B. Yurke et al.
Observation of Squeezed States Generated byFour-Wave Mixing in an Optical Cavity // Phys. Rev. Lett. – 1985. – Vol. 55(22). – P. 2409–2412.[89] M. W. Maeda, P. Kumar, J. H. Shapiro. Squeezing experiments in sodium vapor // J. Opt.Soc. Am. B. – 1987. – Vol. 4(10). – P.
1501–1513.[90] M. D. Levenson, R. M. Shelby, S. H. Perlmutter. Squeezing of classical noise by nondegeneratefour-wave mixing in an optical fiber // Opt. Lett. – 1985. – Vol. 10(10). – P. 514–516.[91] L.-A. Wu, H. J. Kimble, J. L. Hall, H. Wu. Generation of Squeezed States by ParametricDown Conversion // Phys.
Rev. Lett. – 1986. – Vol. 57(20). – P. 2520–2523.[92] A. Heidmann, R. J. Horowicz, S. Reynaud et al. Observation of Quantum Noise Reduction onTwin Laser Beams // Phys. Rev. Lett. – 1987. – Vol. 59(22). – P. 2555–2557.[93] M. Mehmet, H. Vahlbruch, N. Lastzka et al. Observation of squeezed states with strong photonnumber oscillations // Phys. Rev. A.
– 2010. – Vol. 81(1). – P. 013814.[94] M. Xiao, L.-A. Wu, H. J. Kimble. Detection of amplitude modulation with squeezed light forsensitivity beyond the shot-noise limit // Opt. Lett. – 1988. – Vol. 13(6). – P. 476–478.[95] M. Xiao, L.-A. Wu, H. J. Kimble. Precision measurement beyond the shot-noise limit // Phys.Rev. Lett. – 1987. – Vol.
59(3). – P. 278–281.[96] J. Gao, F. Cui, C. Xue et al. Generation and application of twin beams from an opticalparametric oscillator including an α-cut KTP crystal // Opt. Lett. – 1998. – Vol. 23(11). – P.870–872.114[97] E.S. Polzik, J. Carri , H.J. Kimble. Spectroscopy with squeezed light // Phys. Rev. Lett. –1992. – Vol. 68(20). – P. 3020–3023.[98] P. H. S. Ribeiro, C. Schwob, A. Maı̂tre, C. Fabre. Sub-shot-noise high-sensitivity spectroscopywith optical parametric oscillator twin beams // Opt. Lett.
– 1997. – Vol. 22(24). – P. 1893–1895.[99] S.F. Pereira, Z.Y. Ou, H.J. Kimble. Backaction evading measurements for quantumnondemolition detection and quantum optical tapping // Phys. Rev. Lett. –1994. – Vol. 72(2).– P. 214–217.[100] H. Wang, Y. Zhang, Q. Pan et al. Experimental Realization of a Quantum Measurement forIntensity Difference Fluctuation Using a Beam Splitter // Phys. Rev. Lett.
– 1999. – Vol. 82(7).– P. 1414–1417.[101] L.A. Lugiato, A. Gatti. Spatial structure of a squeezed vacuum // Phys. Rev. Lett. – 1993. –Vol. 70(25). – P. 3868–3871.[102] L. Lopez, S. Gigan, N. Treps et al. Multimode squeezing properties of a confocal opticalparametric oscillator: Beyond the thin-crystal approximation // Phys.
Rev. A. – 2005. – Vol.72(1). – P. 013806.[103] L. Lopez, B. Chalopin, A. R. de la Souchère et al. Multimode quantum properties of a selfimaging optical parametric oscillator: Squeezed vacuum and Einstein-Podolsky-Rosen-beamsgeneration // Phys. Rev. A. – 2009. – Vol. 80(4). – P. 043816.[104] B. Chalopin, F. Scazza, C. Fabre, N. Treps. Direct generation of a multi-transverse modenon-classical state of light // Opt. Express. – 2011. – Vol.
19(5). – P. 4405–4410.[105] В. А. Аверченко, Т. Ю. Голубева, Ю. М. Голубев, C. Fabre. Широкополосное излучениевырожденного параметрического генератора света над порогом генерации в информационных приложениях // Оптика и cпектроскопия. – 2008. – Vol. 105(5). – P. 831–843.[106] P. van Loock, S. L Braunstein, H. J Kimble. Broadband teleportation // Phys. Rev. A. – 2000.– Vol.
62(2). – P. 022309.115[107] A. E. Dunlop, E.H. Huntington, C.C. Harb, T.C. Ralph. Generation of a frequency combof squeezing in an optical parametric oscillator // Phys. Rev. A. – 2006. – Vol. 73(1). – P.013817–013824.[108] R.J. Senior, G.N. Milford, J. Janousek et al.
Observation of a comb of optical squeezing overmany gigahertz of bandwidth // Opt. Express. – 2007. – Vol. 15(9). – P. 5310–5317.[109] N.C. Menicucci, S.T. Flammia, O. Pfister. One-Way Quantum Computing in the OpticalFrequency Comb // Phys. Rev. Lett. – 2008. – Vol. 101(13). – P. 130501.[110] G. J. de Valcárcel, G. Patera, N. Treps, C. Fabre.
Multimode squeezing of frequency combs// Phys. Rev. A. – 2006. – Vol. 74(6). – P. 061801.[111] A. Piskarskas, V. Smil’gyavichyus, A. Umbrasas. Continuous parametric generation ofpicosecond light pulses // Quantum Electronics. – 1988. – Vol. 18(2). – P. 155.[112] E.C. Cheung, J.M. Liu.
Theory of a synchronously pumped optical parametric oscillator insteady-state operation // J. Opt. Soc. Am. B. – 1990. – Vol. 7(8). – P. 1385.[113] H.M. van Driel. Synchronously pumped optical parametric oscillators // Applied Physics B:Lasers and Optics. – 1995. – Vol. 60. – P. 411–420.[114] URL:https://www.coherent.com/lasers/main/ultrafast-laser-oscillators-andamplifiers/ultrafast-oscillators.[115] R. Medeiros de Araújo, J. Roslund, Y. Cai, G. Ferrini, C. Fabre, and N. Treps.
Fullcharacterization of a highly multimode entangled state embedded in an optical frequency combusing pulse shaping // Phys. Rev. A. – 2014 – Vol. 89. – P. 053828.[116] G. Patera, N. Treps, C. Fabre, and G.J. de Valcárcel. Giving light a good squeeze // Eur.Phys.
J. D. – 2010. – Vol. 56. – P. 123–140.[117] J. Roslund, R. Medeiros de Araújo, S. Jiang, C. Fabre and N. Treps. Wavelength-multiplexedquantum networks with ultrafast frequency combs// Nat. Photon. Lett. – 2014 – Vol. 8. – P.109–112.[118] Ю. И. Манин. Вычислимое и невычислимое. – М.: Сов. Радио. – 1980. – 128c.116[119] R. Feynman. Simulating Physics with Computers // Inter. Jour.
Theor. Phys. – 1982. – Vol.21(6/7). – P. 467–488.[120] Г. П. Мирошниченко. Линейные оптические квантовые вычисления // Наносистемы: физика, химия, математика. – 2012. – Vol. 3(4). – P. 36–53.[121] P. W. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms ona Quantum Computer // SIAM J. on Computing. – 1997. – Vol.
26(5). – P. 1484–1509.[122] L.K. Grover A fast quantum mechanical algorithm for database search // Proc., 28th Ann.ACM Symp. on the Theory of Comp. – 1996. – P. 212.[123] N.A. Gershenfeld, I.L. Chuang. Bulk spin resonance quantum computation // Science. – 1997.– Vol. 275. – P.
350–356.[124] Yu. A. Pashkin, T. Yamamoto, O. Astafiev, Y. Nakamura, D. V. Averin, J. S. Tsai. Quantumoscillations in two coupled charge qubits. // Nature. – 2003. – P. 421 823.[125] J. Martinis, S. Nam, J. Aumentado, and C. Urbina. Rabi oscillations in a large Josephsonjunction qubit // Phys. Rev. Lett. – 2002. – Vol.89.
– P. 117901.[126] B. Kane. A silicon –based nuclear spin quantum computer// Nature. – 1998. – Vol. 393. –P.133.[127] D. Loss and D. P. DiVincenzo. Quantum computation with quantum dots // Phys. Rev. –1998. – Vol. 57. – P. 120.[128] K. Hammerer et al. Quantum interface between light and atomic ensembles // Rev.
Mod. Phys.– 2010. – Vol. 82. – P. 1041–1093.[129] R. Raussendorf and T.-C. Wei Quantum Computation by Local Measurement // Ann. Rev.of Cond. Matt. Phys. – 2012. – Vol. 3. – P. 239–261.[130] D.M. Greenberger et al. // Compendium of Quantum Physics, Springer, 2009[131] R. Raussendorf, D.E. Browne, H.J. Briegel. Measurement-based quantum computation oncluster states // Phys. Rev. A. – 2003. – Vol. 68. – P. 022312.117[132] D. Gottesman.
The Heisenberg Representation of Quantum Computers // arXiv:quantph/9807006. 1998.[133] S. Lloyd, S.L. Braunstein. Quantum Computation over Continuous Variables // Phys. Rev.Lett. – 1999. – Vol. 82. – P. 1784–1787.[134] N. C. Menicucci, Peter van Loock, Mile Gu et al. Universal Quantum Computation withContinuous-Variable Cluster States // Phys. Rev. Lett. – 2006.
– Vol. 97. – P. 110501.[135] M. Gu, C. Weedbrook, N.C. Menicucci et al. Quantum computing with continuous-variableclusters // Phys. Rev. A. – 2009. – Vol. 79. – P. 062318.[136] D. F. Milne, N. V. Korolkova. Composite-cluster states and alternative architectures for oneway quantum computation // Phys.
Rev. A. – 2012. – Vol. 85. – P. 032310.[137] Hui Sun Li, Qin Chen Yan, Xiang Li Gao. Creation of four-mode weighted cluster states withatomic ensembles in high-Q ring cavities // Opt. Express. – 2012. – Vol. 20(3). – P. 3176–3191.[138] O. Houhou, H. Aissaoui, A. Ferraro. Generation of cluster states in optomechanical quantumsystems // Phys. Rev. A. – 2015. – Vol. 92. – P. 063843.[139] M.