Диссертация (1150447), страница 22
Текст из файла (страница 22)
–Vol. 174(10). – P. 1105–1108.[32] Е.Б. Александров и И.С. Запасский. В погоне за «медленным светом» // УФН. – 2006. –Vol. 176(10). – P. 1093–1102.108[33] L. Ma, O. Slattery and X. Tang. Optical quantum memory based on electromagneticallyinduced transparency // Journal of Optics. – 2017 – Vol. 19(4).
– P. 043001.[34] M. Nilsson and S. Kröll. Solid state quantum memory using complete absorption and reemission of photons by tailored and externally controlled inhomogeneous absorption profiles //Optics Communications. – 2005. – Vol. 247(4-6). – P. 393–403.[35] S. A. Moiseev and B. S. Ham. Photon-echo quantum memory with efficient multipulse readings.// Phys. Rev. A. – 2004. – Vol. 70(6). – P. 063809.[36] B. Kraus, W. Tittel, N. Gisin, M. Nilsson, S. Kröll, and J.I.
Cirac. Quantum memory fornonstationary light fields based on controlled reversible inhomogeneous broadening // Phys.Rev. A. – 2006. – Vol. 73. – P. 020302 (R).[37] A.L. Alexander, J.J. Longdell, M. J. Sellars, and N.B. Manson. Photon Echoes Produced bySwitching Electric Fields // Phys. Rev. Lett. – 2006. – Vol. 96. – P. 043602.[38] G. Hetet, J.J.
Longdell, A.L. Alexander, P.K. Lam, and M.J. Sellars. Electro-Optic QuantumMemory for Light Using Two-Level Atoms // Phys. Rev. Lett. – 2008. – Vol. 100(2). – P. 23601.[39] M. U. Staudt, S. R. Hastings-Simon, M. Nilsson, M. Afzelius, V.
Scarani, R. Ricken, H. Suche,W. Sohler, W. Tittel, and N. Gisin. Fidelity of an optical memory based on stimulated photonechoes // Phys. Rev. Lett. – 2007. – Vol. 98(11). – P. 113601.[40] M. Afzelius, C. Simon, H. de Riedmatten, N. Gisin. Multimode quantum memory based onatomic frequency combs // Phys. Rev. A. – 2009. – Vol. 79.
– P. 052329.[41] G. Corrielli, A. Seri, M. Mazzera, R. Osellame, H. de Riedmatten. An Integrated OpticalMemory based on Laser Written Waveguides // Phys. Rev. Applied. – 2016. – Vol. 5. – P.054013.[42] R.A. Akhmedzhanov, L.A. Gushchin, A.A. Kalachev, S.L. Korableva, D.A. Sobgayda and I.V.Zelensky.
Atomic frequency comb memory in an isotopically pure143N d3+ : Y 7 LiF4 crystal //Laser Phys. Lett. – 2016. – Vol. 13(1).[43] A. Kuzmich and E.S. Polzik. Quantum Information with Continuous Variables // Kluwer,2003, P. 231–265.109[44] C.A. Muschik, K. Hammerer, E.S. Polzik, and J.I. Cirac. Efficient quantum memory andentanglement between light and an atomic ensemble using magnetic fields // Phys. Rev.
A. –2006. – Vol. 73. – P. 062329.[45] D.V. Vasilyev, I.V. Sokolov, E.S. Polzik. Quantum volume hologram // Phys. Rev. A. – 2010.– Vol. 81. – P. 020302.[46] U. Vool, S. Shankar, S. O. Mundhada, N. Ofek, A. Narla, K. Sliwa, E. Zalys-Geller, Y. Liu, etal. Continuous quantum non-demolition measurement of the transverse component of a qubit// Phys. Rev. Lett. – 2016. – Vol. 117. – P. 133601.[47] B. Julsgaard, J. Sherson, J.I. Cirac, J.Fiurášek and E.S. Polzik. Experimental demonstrationof quantum memory for light // Nature. – 2004. – Vol.
432. – P. 482–486.[48] K. Hammerer, M.M. Wolf, E.S. Polzik, J.I. Cirac. Quantum benchmark for storage andtransmission of coherent states // Phys. Rev. Lett. – 2005. – Vol. 94. – P. 150503.[49] К.С. Самбурская, Т.Ю. Голубева, Ю.М. Голубев, E. Giacobino. Квантовая голография прирезонансном адиабатическом взаимодействии полей с атомной средой в Λ-конфигурации// Опт. и Спектр.
– 2011. – Том 110(5). – С. 827–839.[50] K. Tikhonov, K. Samburskaya, T. Golubeva, and Yu. Golubev. Storage and retrieval ofsqueezing in multimode resonant quantum memories // Phys. Rev. A. – 2014. – Vol. 89. –P. 013811.[51] J. Nunn, N. K. Langford, W. S. Kolthammer, T. F. M. Champion, M. R. Sprague, P. S.Michelberger, X.-M. Jin, D. G. England, and I. A. Walmsley. Enhancing Multiphoton Rateswith Quantum Memories // Phys. Rev. Lett.
– 2013. – Vol. 110. – P. 133601.[52] W.K. Wootters, W.H. Zurek. A Single Quantum Cannot be Cloned // Nature. – 1982. – Vol.299. – P. 802-803.[53] A.V. Gorshkov, T. Calarco, M.D. Lukin, and A.S. Sørensen. Photon storage in Lambda-typeoptically dense atomic media. IV. Optimal control using gradient ascent // Phys.Rev.A. – 2008.– Vol. 77. – P. 043806.110[54] A.Dantan, A. Bramati, and M. Pinard. Atomic quantum memory: Cavity versus single-passschemes // Phys. Rev. A.
– 2005. – Vol. 71. – P.043801.[55] A. Dantan, J. Cviklinski, M. Pinard, and P. Grangier. Dynamics of a pulsed continuousvariable quantum memory // Phys. Rev. A. – 2006. – Vol. 73. – P. 032338.[56] B. M. Sparkes, J. Bernu, M. Hosseini, J. Geng, Q. Glorieux, P. A. Altin, P. K.
Lam, N.P. Robins and B. C. Buchler. An ultra-high optical depth cold atomic ensemble for quantummemories // Journal of Physics: Conference Series. – 2013. – Vol. 467. – P. 012009.[57] I. Novikova, A.V. Gorshkov, D.F. Phillips, A.S. Sørensen, M.D. Lukin, and R.L. Walsworth.Optimal Control of Light Pulse Storage and Retrieval // Phys. Rev. Lett. – 2007. – Vol. 98. –P.243602.[58] B.M.
Sparkes, J. Bernu, M. Hosseini, J. Geng, Q. Glorieux, P.A. Altin, P.K. Lam, N.P.Robins and B.C. Buchler. Gradient echo memory in an ultra-high optical depth cold atomicensemble // New Journal of Physics. – 2013. – Vol. 15. – P. 085027.[59] Y.-W. Choet.al. Highly efficient optical quantum memory with long coherence time in coldatoms // Optica. – 2016. – Vol.
3(1). – P. 100.[60] Y.-H. Chen, M.-J. Lee, I.-C. Wang, S. Du, Y.-F. Chen, Y.-C. Chen, and I. A. Yu. Coherentoptical memory with high storage efficiency and largefractional delay // Phys. Rev. Lett. –2013. – Vol. 110. – P. 083601.[61] G. Heinze, C. Hubrich, and T. Halfmann. Stopped light and image storage byelectromagnetically induced transparency up to the regime of one minute // Phys. Rev. Lett.– 2013. – Vol. 111.
– P. 033601.[62] K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch,and I. A. Walmsley. Towards high-speed optical quantum memories // Nat. Photon. – 2010. –Vol. 4. – P. 218–221.[63] K.F. Reim, P. Michelberger, K.C. Lee, J. Nunn, N. K. Langford, and I. A.
Walmsley. Singlephoton-level quantum memory at room temperature // Phys. Rev. Lett. – 2011. – Vol. 107. –P. 053603.111[64] M. Sabooni, Q. Li, S. Kröll, and L. Rippe. Efficient quantum memory using a weakly absorbingsample // Phys. Rev. Lett. – 2013. – Vol. 110. – P. 133604.[65] M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler. High efficiencycoherent optical memory with warm rubidium vapour // Nat. Commun.
– 2011. – Vol. 2. – P.174.[66] M.P. Hedges, J.J. Longdell, Y. Li, and M. J. Sellars. Efficient quantum memory for light //Nature. – 2010. – Vol. 465. – P. 1052–1056.[67] R. Zhao, Y. O. Dudin, S. D. Jenkins, C. J. Campbell, D. N. Matsukevich, T. A. B. Kennedy,A. Kuzmich. Long-lived quantum memory // Nature Physics.
– 2009. – Vol. 5. – P. 100 –104.[68] M.V. Balabas and O.Yu. Tretiak. Comparative study of alkali-vapour cells with alkane-,alkeneand 1-nonadecylbenzene-based antirelaxation wall coatings // Quantum Electronics. –2013. – Vol. 43(12). – P. 1175–1178.[69] M. Balabas, K. Jensen, and W. Wasilewskiet. High quality anti-relaxation coating material foralkali atom vapor cells // Opt. Express. – 2009. – Vol. 18(6). – P.
5825 – 5830.[70] X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Duck, T. Strassel, L. Li, N.-L. Liu, B. Zhao,J.-W. Pan. Efficient and long-lived quantum memory with cold atoms inside a ring cavity //Nature Physics. – 2012. – Vol. 8. – P. 517 – 521.[71] Kent A.G. Fisher, D.G. England, J.-P. W. MacLean, P.J. Bustard, K. Heshami, K.J.Resch, B.J. Sussman. Storage of polarization-entangled THz-bandwidth photons in a diamondquantum memory // arXiv:1706.05978[72] K. Kutluer, M. Mazzera, and H.
de Riedmatten. Solid state source of non-classical photonpairs with embedded multimode quantum memory // Phys. Rev. Lett. – 2017. – Vol. 118. – P.210502.[73] D.V. Vasilyev, I.V. Sokolov, E.S. Polzik. Quantum memory for images: A quantum hologram// Phys. Rev. A. – 2008. – Vol. 77. – P. 020302.[74] D.V. Vasilyev, I.V. Sokolov. Double-pass quantum volume hologram // Phys. Rev. A. – 2011.– Vol. 83.
– P. 053851.112[75] T. Golubeva, Yu. Golubev, O. Mishina et al. High-speed spatially multimode atomic memory// Phys. Rev. A. – 2011. – Vol. 83.– P. 053810.[76] K. Surmacz, J. Nunn, K. Reim, K. C. Lee, V. O. Lorenz, B. Sussman, I. A. Walmsley, D.Jaksch. Efficient spatially-resolved multimode quantum memory // Phys. Rev. A. – 2008.
–Vol. 78. – P. 033806.[77] M. Bonarota, J.-L. Le Gouet, and T. Chaneliere. Highly multimode storage in a crystal //New J. Phys. – 2011. – Vol. 13. – P. 013013.[78] И. В. Соколов, А. Гатти, М. И. Колобов, Л. А. Луджиато. Квантовая телепортация иголография // УФН.
— 2001. — Т. 171. — С. 1264.[79] K. Jensen, W. Wasilewski, H. Krauter, T. Fernholz, B. M. Nielsen, M. Owari, M. B. Plenio,A. Serafini, M. M. Wolf and E. S. Polzik. Quantum memory for entangled continuous-variablestates // Nature Physics. – 2011. – Vol. 7. – P. 13–16.[80] G. D. Fuchs, G. Burkard, P. V. Klimov and D. D. Awschalom. A quantum memory intrinsic tosingle nitrogen–vacancy centres in diamond // Nature Physics. – 2011.
– Vol. 7. – P. 789–793.[81] M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam and B. C. Buchler. Unconditional roomtemperature quantum memory // Nature Physics. – 2011. – Vol. 7. – P. 794–798.[82] С. А. Ахманов, Б. В. Жданов, А. И. Ковригин, В. И. Кузнецов, С. М. Першин, А. И. Холодных.
Импульсно-периодический параметрический генератор света, перестраиваемыйв диапазоне 0,63–3,4 мкм, для нелинейной спектроскопии // Квантовая электроника. –1977. – Vol. 4(10). – P. 2225–2233.[83] Д.Н. Клышко. Поперечная группировка фотонов и двухфотонные процессы в поле параметрического рассеяния света // ЖЭТФ. –1982. – Vol. 83. – P. 1313–1323.[84] N.A. Borshchevskaya, K.G. Katamadze, S.P. Kulik and M.V. Fedorov. Three-photongeneration by means of third-order spontaneous parametric down-conversion in bulk crystals// Laser Phys.