Диссертация (1150422), страница 11
Текст из файла (страница 11)
Schöll, H. G. Schuster. — Weinheim:Wiley-VCH, 2007. — 849 p.101. Schöll, E. Control of self-organizing nonlinear systems / E. Schöll,S. H. L. Klapp, P. Hövel. — Berlin: Springer, 2016. — 496 p.102. Selivanov, A. Passification-based adaptive control: uncertain input and outputdelays / A. Selivanov, E. Fridman, A. Fradkov // Automatica. — 2015. —Vol. 54. — P.
107–113.103. Selivanov, A. Passification-based decentralized adaptive synchronization of dynamical networks with time-varying delays / A. Selivanov, A. Fradkov, E. Fridman // Journal of The Franklin Institute. — 2015. — Vol. 352. — P. 52–72.104. Shiriaev, A. S. Stabilization of invariant sets for nonlinear non-affine systems /A. S.
Shiriaev, A. L. Fradkov // Automatica. — 2000. — Vol. 36, Issue 11. —P. 1709–1715.105. Singer, W. Neuronal synchrony: a versatile code review for the definition ofrelations? / W. Singer // Neuron. — 2000. — Vol. 24, Issue 1. — P. 49–65.106. Singer, W. Binding by synchrony [Электронный ресурс] / W. Singer //Scholarpedia. —2007. —Vol. 2. — Режим доступа :http://www.scholarpedia.org/article/Binding_by_synchrony, свободный.88107. Smith, H. M.
Synchronous flashing of fireflies / H. M. Smith // Science. —1935. — Vol. 82. — P. 151–152.108. Source-space EEG neurofeedback links subjective experience with brain activityduring effortless awareness meditation [Электронный ресурс] / R. Lutterveld,S. D. Houlihan, P.
Pal et al. // NeuroImage. —па :2016. — Режим досту-http://www.sciencedirect.com/science/article/pii/S1053811916001567.109. Steur, E. Semi-passivity and synchronization of diffusively coupled neuronaloscillators / E. Steur, I. Tyukin, H. Nijmeijer // Physica D. — 2009. — Vol. 328.— P. 2119–2128.110. Strogatz, S.
Coupled oscillators and biological synchronization / S. H. Strogatz,I. Stewart // Scientific American. — 1993. — Vol. 269, Issue 6. — P. 102–109.111. Strogatz, S. H. From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators / S. H. Strogatz // Physica D:Nonlinear Phenomena. — 2000.
— Vol. 143, Issue 1. — P. 1–20.112. Sun, J. Master stability functions for coupled nearly identical dynamical systems / J. Sun, E. M. Bollt, T. Nishikawa // Europhysics Letters Association. —2009. — Vol. 85, Issue 6. — 60011.113.
Symmetry-breaking transitions in networks of nonlinear circuit elements /M. Heinrich, T. Dahms, V. Flunkert et al. // New Journal of Physics. — 2010.— Vol. 12, Issue 11. — 113030.114. Synchronization analysis of delayed complex networks via adaptive timevarying coupling strengths / L. Huang, Z. Wang, Y. Wang, Y. Zuo // PhysicsLetters A. — 2009. — Vol. 373. — P. 3952–3958.89115. Synchronization in complex networks / A. Arenas, A. Dı́az-Guilera, J. Kurthset al. // Physics Reports. — 2008.
— Vol. 469, Issue 3. — P. 93–153.116. Synchronization in heterogeneous FitzHugh-Nagumo networks with hierarchical architecture / S. A. Plotnikov, J. Lehnert, A. L. Fradkov, E. Schöll //Physical Review E. — 2016. — Vol. 94, Issue 1. — 012203.117. Synchronization is enhanced in weighted complex networks / M. Chavez,D. U. Hwang, A. Amann et al. // Physical Review Letters. — 2005. —Vol.
94. — 218701.118. Synchronization of chemical micro-oscillators / M. Toiya, H. O. GonzálezOchoa, V. K. Vanag et al. // The Journal of Physical Chemistry Letters. —2010. — Vol. 8, Issue 1. — P. 1241–1246.119. Synchronization of plant circadian oscillators with a phase delay effect of thevein network / H.
Fukuda, N. Nakamichi, M. Hisatsune et al. // Physical ReviewLetters. — 2007. — Vol. 99. — 098102.120. Synchronization of underdamped Josephson-junction arrays / G. Filatrella,N. F. Pedersen, C. J. Lobb, P. Barbara // The European Physical Journal B- Condensed Matter and Complex Systems. — 2003. — Vol. 34, Issue 1.
—P. 3–8.121. Tass, P. A. Phase resetting in medicine and biology: stochastic modelling anddata analysis / P. A. Tass. — Berlin: Springer, 1999. — 329 p.122. Time-delayed feedback in neurosystems / E. Schöll, G. Hiller, P. Hövel,M. A. Dahlem // Philosophical Transactions of the Royal Society A. — 2009.— Vol. 367, Issue 1891. — P. 1079–1096.123. The control of chaos: theory and applications / S.
Boccaletti, C. Grebogi,Y.-C. Lai et al. // Physics Reports. — 2000. — Vol. 329. — P. 103–197.90124. Visuomotor integration is associated with zero time-lag synchronization amongcortical areas / P. Roelfsema, A. Engel, P. König, W. Singer // Nature. — 1997.— Vol. 385. — P. 157–161.125. Vlasov, V. Synchronization of a Josephson junction array in terms of globalvariables / V. Vlasov, A. Pikovsky // Physical Review E. — 2013. — Vol. 88.— 022908.126.
Wiesenfeld, K. Averaged equations for Josephson junction series arrays /K. Wiesenfeld, J. W. Swift // Physical Review E. — 1995. — Vol. 51, Issue 2. — P. 1020–1025.127. Winfree, A. T. Varieties of spiral wave behavior in excitable media / A. T. Winfree // Chaos. — 1991. — Vol. 1. — P. 303–334.128. Winfree, A. T. The geometry of biological time / A.
T. Winfree. — 2nd edition.— Berlin: Springer, 2001. — 803 p.129. Zero-lag synchronization of chaotic units with time-delayed couplings /M. Zigzag, M. Butkovski, A. Englert et al. // Europhysics Letters. — 2009. —Vol. 85. — 60005.130. Zhang, R. Synchronization in complex networks with adaptive coupling /R. Zhang, M. Hu, Z. Xu // Physics Letters A. — 2007. — Vol. 368.
—P. 276–280.131. Zhou, J. Pinning adaptive synchronization of a general complex dynamicalnetwork / J. Zhou, J. Lu, J. Lü // Automatica. — 2008. — Vol. 44, Issue 4. —P. 996–1003.91.