Диссертация (1150342), страница 16
Текст из файла (страница 16)
Solar energy in progress and future research trends // Prog. EnergyCombust. Sci. 2004. Vol. 30, № 4. P. 367–416.2.Гременок В.Ф., Тиванов М.С., Залесcкий В.Б. Солнечные элементы наоснове полупроводниковых материалов / Минск: БГУ, 2007. – 222c.3.Fonash S.J. Solar Cell Device Physics. 2nd ed. / New York: Academic Press Inc,2010. – 353 p.4.Knupfer M. Exciton binding energies in organic semiconductors // Appl.
Phys. AMater. Sci. Process. 2003. Vol. 77, № 5. P. 623–626.5.Mihailetchi V.D., Xie H., Boer B.De, Koster L.J.A., Blom P.W.M. Chargetransport and photocurrent generation in poly(3-hexylthiophene): Methanofullerenebulk-heterojunction solar cells // Adv. Funct. Mater.
2006. Vol. 16, № 5. P. 699–708.6.Markov D.E., Amsterdam E., Blom P.W.M., Sieval A.B., Hummelen J.C.Accurate measurement of the exciton diffusion length in a conjugated polymer using aheterostructure with a side-chain cross-linked fullerene layer // J. Phys. Chem. A. 2005.Vol. 109, № 24. P. 5266–5274.7.Kay A., Graetzel M.
Artificial photosynthesis. 1. Photosensitization of titaniasolar cells with chlorophyll derivatives and related natural porphyrins // J. Phys. Chem.1993. Vol. 97, № 23. P. 6272–6277.8.Wolf S. De., Descoeudres A., Holman Z.C., Ballif C. High-efficiency SiliconHeterojunction Solar Cells: A Review // Green. 2012. Vol. 0, № 0. P. 7–24.9.Hamakawa Y., Fujimoto K., Okuda K., Kashima Y., Nonomura S., Okamoto H.New types of high efficiency solar cells based on a-Si // Appl.
Phys. Lett. 1983. Vol. 43,№ 7. P. 644–646.10.Tsunomura Y., Yoshimine Y., Taguchi M., Baba T., Kinoshita T., Kanno H.,Sakata H., Maruyama E., Tanaka M. Twenty-two percent efficiency HIT solar cell //Sol. Energy Mater. Sol. Cells. 2009. Vol. 93, № 6-7. P. 670–673.10511.Taguchi M., Yano A., Tohoda S., Matsuyama K., Nakamura Y., Nishiwaki T.,Fujita K., Maruyama E. 24.7% Record efficiency HIT solar cell on thin silicon wafer //IEEE J. Photovoltaics. 2014. Vol. 4, № 1. P.
96–99.12.Gardner J.S., Shurdha E., Wang C., Lau L.D., Rodriguez R.G., Pak J.J. Rapidsynthesis and size control of CuInS2 semi-conductor nanoparticles using microwaveirradiation // J. Nanoparticle Res. 2008. Vol. 10, № 4. P. 633–641.13.Rabeh M.B., Khedmi N., Fodha M.A., Kanzari M. The effect of thickness onoptical band gap and N-type conductivity of CuInS2 thin films annealed in airatmosphere // Energy Procedia. 2014. Vol. 44, № May 2013.
P. 52–60.14.Yue W., Wu F., Liu C., Qiu Z., Cui Q., Zhang H., Gao F., Shen W., Qiao Q.,Wang M. Incorporating CuInS2 quantum dots into polymer/oxide-nanoarray system forefficient hybrid solar cells // Sol. Energy Mater. Sol. Cells. 2013. Vol. 114. P. 43–53.15.Robert W. Birkmire., Xie H., Brian E. McCandless. CdTe thin film technology:Leading thin film PV into the future // Current Opinion in Solid State and MaterialsScience. 2010. Vol. 14, № 5.
P. 139–142.16.Deb S.K., Ferrere S., Frank A.J., Gregg B.A., Huang S.Y., Nozik A.J.,Schlichthörl G., Zaban A. Photochemical Solar Cells Based on Dye-Sensitization ofNanocrystalline TiO 2 // NCPV Photovoltaics Program Review: Proceedings Of The15th Conference, 1999. Vol. 462. P. 473–480.17.Mihailetchi V.D., Xie H., Boer B.D., Koster L.J.A., Blom P.W.M. Chargetransport and photocurrent generation in poly(3-hexylthiophene): Methanofullerenebulk-heterojunction solar cells // Adv.
Funct. Mater. 2006. Vol. 16, № 5. P. 699–708.18.Huang J., Li G., Yang Y. Influence of composition and heat-treatment on thecharge transport properties of poly(3-hexylthiophene) and [6,6]-phenyl C61 -butyricacid methyl ester blends // Appl. Phys. Lett.
2005. Vol. 87, № 11. P. 2003–2006.19.Liang Y., Feng D., Wu Y., Tsai S.T., Li G., Ray C., Yu L. Highly efficient solarcell polymers developed via fine-tuning of structural and electronic properties // J. Am.Chem. Soc. 2009. Vol. 131, № 22. P. 7792–7799.10620.Liang Y., Xu Z., Xia J., Tsai S. T., Wu Y., Li G., Ray C., Yu L.
For the brightfuture-bulk heterojunction polymer solar cells with power conversion efficiency of7.4% // Adv. Mater. 2010. Vol. 22, № 20. P. 135–138.21.Chen C., Wang M., Li J., Pootrakulchote N., Alibabaei L., Decoppet J., Tsai J.,Gra C., Wu C., Zakeeruddin S. M., Gra M. Highly Efficient Light-Harvesting.//ACSNano 2009. Vol. 3, № 10. P.
3103–3109.22.Shaheen S. E., Brabec C. J., Sariciftci N. S., Padinger F., Fromherz T.,Hummelen J. C. 2.5% Efficient Organic Plastic Solar Cells // Appl. Phys. Lett. 2001.Vol. 78, № 6. P. 841–843.23.Faist M. A., Keivanidis P. E., Foster S., Wöbkenberg P. H., Anthopoulos T. D.,Bradley D. D. C., Durrant J. R., Nelson J. Effect of multiple adduct fullerenes on chargegeneration and transport in photovoltaic blends with poly(3-hexylthiophene-2,5-diyl) //J. Polym.
Sci. Part B Polym. Phys. 2011. Vol. 49, № 1. P. 45–51.24.Matsuo Y., Sato Y., Niinomi T., Soga I., Tanaka H., Nakamura E. Columnarstructure in bulk heterojunction in solution-processable three-layered p-i-n organicphotovoltaic devices using tetrabenzoporphyrin precursor and silylmethyl[60]fullerene// J.
Am. Chem. Soc. 2009. Vol. 131, № 44. P. 16048–16050.25.Olson J. D., Rodriguez Y. W., Yang L. D., Alers G. B., Carter S. A. CdTeSchottky diodes from colloidal nanocrystals // Appl. Phys. Lett. 2010. Vol. 96, № 24. P.2008–2011.26.Noone K. M., Strein E., Anderson N. C., Wu P. T., Jenekhe S. A., Ginger D. S.Broadband absorbing bulk heterojunction photovoltaics using low-bandgap solutionprocessed quantum dots // Nano Lett. 2010. Vol. 10, № 7.
P. 2635–2639.27.Franzman M. A., Schlenker C. W., Thompson M. E., Brutchey R. L. Solution-phase synthesis of SnSe nanocrystals for use in solar cells // J. Am. Chem. Soc. 2010.Vol. 132, № 12. P. 4060–4061.28.Ren S., Zhao N., Crawford S. C., Tambe M., Bulović V., Gradeĉak S.Heterojunction photovoltaics using GaAs nanowires and conjugated polymers // NanoLett. 2011. Vol. 11, № 2. P. 408–413.10729.Maier E., Rath T., Haas W., Werzer O., Saf R., Hofer F., Meissner D.,Volobujeva O., Bereznev S., Mellikov E., Amenitsch H., Resel R., Trimmel G.CuInS2Poly(3-(ethyl-4-butanoate)thiophene) nanocomposite solar cells: Preparation byan in situ formation route, performance and stability issues // Sol. Energy Mater.
Sol.Cells. 2011. Vol. 95, № 5. P. 1354–1361.30.Seo J., Cho M. J., Lee D., Cartwright A. N., Prasad P. N. Efficient heterojunctionphotovoltaic cell utilizing nanocomposites of lead sulfide nanocrystals and a lowbandgap polymer // Adv. Mater. 2011. Vol. 23, № 31. P. 3984–3988.31.Contreras M. A., Noufi R. Chalcopyrite Cu ( In , Ga ) Se2 and defect-chalcopyrite Cu ( In , Ga ) 3Se5 materials in photovoltaic P-N junctions // J.
Cryst.Growth. 1997. Vol. 174. P. 283–288.32.Delahoy A. E., Chen L., Akhtar M., Sang B., Guo S. New technologies for CIGSphotovoltaics // Sol. Energy. 2004. Vol. 77, № 6. P. 785–793.33.Akhavan V. A., Goodfellow B. W., Panthani M. G., Steinhagen C., Harvey T. B.,Stolle C. J., Korgel B. A. Colloidal CIGS and CZTS nanocrystals: A precursor route toprinted photovoltaics // Journal of Solid State Chemistry. 2012. Vol. 189.
P. 2–12.34.Stolle C. J., Harvey T. B., Korgel B. A. Nanocrystal photovoltaics: A review ofrecent progress // Curr. Opin. Chem. Eng. 2013. Vol. 2, № 2. P. 160–167.35.Lee H. J., Chen P., Moon S. J., Sauvage F., Sivula K., Bessho T., Gamelin D. R.,Comte P., Zakeeruddin S. M., Seok S. I., Gratzel M., Nazeeruddin M. K. RegenerativePbS and CdS quantum dot sensitized solar cells with a cobalt complex as hole mediator// Langmuir. 2009. Vol. 25, № 13. P.
7602–7608.36.Pattantyus-Abraham A. G., Kramer I. J., Barkhouse A. R., Wang X.,Konstantatos G., Debnath R., Levina L., Raabe I., Nazeeruddin M. K., Gratzel M.Depleted-heterojunction colloidal quantum dot solar cells // ACS Nano. 2010. Vol. 4, №6. P. 3374–3380.37.Han S., Kong M., Guo Y., Wang M. Synthesis of copper indium sulfidenanoparticles by solvothermal method // Mater.
Lett. 2009. Vol. 63, № 13-14. P. 1192–1194.10838.Zeng T., Ni H., Chen Y., Su X., Shi W. Facile synthesis of CuInS2 nanocrystals“photovoltaic ink” via hot-injection strategy under ambient environment // Mater. Lett.Elsevier, 2016. Vol. 172. P. 94–97.39.Yu C., Zhang L., Tian L., Liu D., Chen F., Wang C. Synthesis and FormationMechanism of CuInS2 Nanocrystals with Tunable Phase // CrystEngComm.
2014. Vol.16, № 41. P. 9596–9602.40.Kruszynska M., Borchert H., Parisi J., Kolny-Olesiak J. Synthesis and shapecontrol of CuInS2 nanoparticles // J. Am. Chem. Soc. 2010. Vol. 132, № 45. P. 15976–15986.41.Chen H., Yu S.M., Shin D.W., Yoo J.B. Solvothermal Synthesis andCharacterization of Chalcopyrite CuInSe2 Nanoparticles // Nanoscale Res. Lett.