Диссертация (1150342), страница 17
Текст из файла (страница 17)
2010.Vol. 5, № 1. P. 217–223.42.Hahn J.S., Gyungse P., Jaehyeong L., Joongpyo S. Synthesis of CuInSe2nanoparticles in an oleic acid solution for application in thin film solar cells // J. Ind.Eng. Chem. 2015. Vol. 21. P. 754–759.43.Jiang Y., Wu Y., Mo X., Yu W., Xie Y., Qian Y. Elemental solvothermal reactionto produce ternary semiconductor CuInE2 (E = S, Se) nanorods // Inorg. Chem.
2000.Vol. 39, № 14. P. 2964–2965.44.Malik M., O’Brien P., Revaprasadu N. Novel Route for the Preparation of CuSeand CuInSe2 Nanoparticles // Adv. Mater. 1999. Vol. 11, № 17. P. 1441–1444.45.Koo B., Patel R. N., Korgel B. A. Synthesis of CuInSe2 nanocrystals withtrigonal pyramidal shape // J. Am. Chem.
Soc. 2009. Vol. 131, № 9. P. 3134–3135.46.Guo Q., Kim S. J., Kar M., Shafarman W. N., Birkmire R. W., Stach E. A.,Agrawal R., Hillhouse H. W. Development of CulnSe 2 nanocrystal and nanoring inksfor low-cost solar cells // Nano Lett. 2008. Vol. 8, № 9. P. 2982–2987.47.Tang J., Hinds S., Kelley S. O., Sargent E. H.
Synthesis of colloidal CuGaSe2,CuInSe2, and Cu(InGa)Se2 nanoparticles // Chem. Mater. 2008. Vol. 20, № 22. P.6906–6910.10948.Hsu W. H., Hsiang H. I., Yen F. C., Shei S. C.. Two-step sintering ofnanocrystalline Cu(In0.7Ga0.3)Se2 // Ceram. Int. Elsevier, 2014. Vol. 41, № 1. P. 547–553.49.Кубракова И.В. Микроволновое излучение в аналитической химии:возможности и перспективы использования // Успехи Химии. 2002. Том. 71, № 4.С.
327–340.50.C. Gabriel, S. Gabriel, E. H. Grant, E. H. Grant, B. S. J. Halstead, and D. MichaelP. Mingos. Dielectric parameters relevant to microwave dielectric heating // Chem. Soc.Rev. 1998. Vol. 27, № 3. P. 213–224.51.M. B. Gawande, S. N. Shelke, R. Zboril, and R. S. Varma. Microwave-assistedchemistry: Synthetic applications for rapid assembly of nanomaterials and organics //Acc.
Chem. Res. 2014. Vol. 47, № 4. P. 1338–1348.52.P. Lidström, J. Tierney, B. Wathey, and J. Westman. Microwave assisted organicsynthesis—a review // Tetrahedron. 2001. Vol. 57, № 45. P. 9225–9283.53.Райхардт К. Растворители и эффекты среды в органической химии / VCHVerlagsgesellscchaft mbH, 1988, пер. с англ. – М: Мир, 1991. – 763 c.54.CRC Handbook of chemistry and physics 63rd edition / Editor: Robert C.
Weast,Boca Raton: CRC press, Inc., 1982. – 2381 p.55.Binner J.G.P., Hassine N.A., Cross T.E. The possible role of the pre-exponentialfactor in explaining the increased reaction rates observed during the microwavesynthesis of titanium carbide // J. Mater. Sci. 1995. Vol. 30, № 21. P. 5389–5393.56.Perreux L., Loupy A. A tentative rationalization of microwave effects in organicsynthesis according to the reaction medium, and mechanistic considerations //Tetrahedron. 2001.
Vol. 57, № 45. P. 9199–9223.57.Berlan J., Giboreau P., Lefeuvre S., Marchand C. Synthese organique sous champmicroondes : premier exemple d’activation specifique en phase homogene //Tetrahedron Lett. 1991. Vol. 32, № 21. P. 2363–2366.58.Pein A., Baghbanzadeh M., Rath T., Haas W., Maier E., Amenitsch H., Hofer F.,Kappe C.O., Trimmel. G. Investigation of the Formation of CuInS2Nanoparticles by110the Oleylamine Route: Comparison of Microwave-Assisted and Conventional Syntheses// Inorg. Chem. 2011. Vol.
50, № 1. P. 193–200.59.Medvedeva A.S., Demina M.M., Kon’kova T.V., Nguyen T. Le H., Afonin A.V.,Ushakov I.A. Microwave assisted solvent- and catalyst-free three-component synthesisof NH-1,2,3-triazoloimines // Tetrahedron. 2017. Vol. 73, № 27-28. P.
3979–3985.60.Mahmoodi N.O., Rahimi S., Pasandideh Nadamani M. Microwave-assistedsynthesis and photochromic properties of new azo-imidazoles // Dye. Pigment. 2017.Vol. 143. P. 387–39261.Bonacorso H.G. Libero F.M., Forno G.M. Dal, Pittaluga E.P., Back D.F. et al.New regioselective synthesis of polyfunctionalized 3-ferrocenyl-1H-pyrroles undermicrowave irradiation // Tetrahedron Lett.
2016. Vol. 57, № 41. P. 4568–4573.62.Zahran M.A.-H., El-Essawy F.A.-A., Yassin S.M., Salem T.A.-R., Boshta N.M.et al. Rapid and Efficient Synthesis of 4-Substituted Pyrazol-5-one under MicrowaveIrradiation in Solvent-Free Conditions // Arch. Pharm. (Weinheim).
2007. Vol. 340, №11. P. 591–598.63.Outirite M., Lebrini M., Lagrenée M., Bentiss F. New one step synthesis of 3,5-disubstituted pyrazoles under microwave irradiation and classical heating // J.Heterocycl. Chem. 2008. Vol. 45, № 2. P. 503–505.64Lee J.C., Choi H.J., Lee Y.C.
Efficient synthesis of multi-substituted oxazolesunder solvent-free microwave irradiation // Tetrahedron Lett. 2003. Vol. 44, № 1. P.123–125.65.Jagani C.L., Sojitra N.A., Vanparia S.F., Patel T.S., Dixit R.B., Dixit B.C.Microwave promoted synthesis and antimicrobial activity of 3-thiazole substituted 2styryl-4(3H)-quinazolinone derivatives // J.
Saudi Chem. Soc. 2012. Vol. 16, № 4. P.363–369.66.Soriente A., Spinella A., De Rosa M., Giordano M., Scettri A. Solvent freereaction under microwave irradiation: A new procedure for Eu+3-catalyzed Michaeladdition of 1,3-dicarbonyl compounds // Tetrahedron Lett. 1997. Vol. 38, № 2. P. 289–290.11167.Sviridova L.A., Golubeva G.A. New method for the direct cyanoethylation ofpyrazole derivatives // Chem. Heterocycl. Compd.
1999. Vol. 35, № 2. P. 245–245.68.Lami L., Casal B., Cuadra L., Alvarez A., Ruiz E. Synthesis of 2 ,4-D esterherbicides // Green Chem. 1999. Vol. 1, № August. P. 199–204.69.Limousin C., Cléophax J., Loupy A., Petit A. Synthesis of benzoyl anddodecanoyl derivatives from protected carbohydrates under focused microwaveirradiation // Tetrahedron. 1998. Vol.
54, № 44. P. 13567–13578.70.Vanden Eynde J.J., Rutot D. Microwave-mediated derivatization of poly(styrene-co-allyl alcohol), a key step for the soluble polymer-assisted synthesis of heterocycles //Tetrahedron. 1999. Vol. 55, № 9. P. 2687–2694.71.Balaji B.S., Chanda B.M. Simple and high yielding syntheses of β-keto esterscatalysed by zeolites // Tetrahedron. 1998. Vol. 54, № 43. P. 13237–13252.72.Majetich G., Hicks R. Applications of microwave-accelerated organic synthesis //Radiat.
Phys. Chem. 1995. Vol. 45, № 4. P. 567–579.73.Heravi M.M., Tajbakhsh M., Bakooie H., Ajami D. Solid State Cleavage ofSemicarbazones with Montmorillonite K-10 Supported Bis(trimethylsilyl)chromateunder Microwave Irradiation // Monatshefte für Chemie / Chem. Mon. Springer-Verlag,1999. Vol. 130, № 7. P. 933–936.74.Oussaid A., Loupy A., Delgado F., Alvarez C., Patino R., Laberge, L., Rousell, J.Selective Oxidation of Arenes in Dry Media under FocusedMicrowaves† // J. Chem.Res.
1997. Vol. 34, № 9. P. 342–343.75.Varma R.S., Saini R.K. Microwave-assisted reduction of carbonyl compounds insolid state using sodium borohydride supported on Alumina // Tetrahedron Lett. 1997.Vol. 38, № 25. P. 4337–4338.76Gadhwal S, Baruah M, Sandhu J. Microwave Induced Synthesis of Hydrazonesand Wolff-Kishner Reduction of Carbonyl Compounds// Synlett, 1999.
Vol. 1999, №10. P. 1573–1574.77.Ju Y., Kumar D., Varma R.S. Revisiting nucleophilic substitution reactions:Microwave-assisted synthesis of azides, thiocyanates, and sulfones in an aqueousmedium // J. Org. Chem. 2006. Vol. 71, № 17. P. 6697–6700.11278.Salmoria G. V., Dall’Oglio E., Zucco C. Aromatic nucleophilic substitutionsunder microwave irradiation // Tetrahedron Lett. 1998. Vol. 39, № 17. P. 2471–2474.79.Štefane B., Požgan F, Sosič I. Gobec S. A microwave-assisted nucleophilicsubstitution reaction on a quinoline system: The synthesis of amino analogues ofnitroxoline // Tetrahedron Lett. 2012. Vol.
53, № 15. P. 1964–1967.80.Garrigues B., Laurent R., Laporte C., Laporterie A., Dubac J. Microwave-Assisted Carbonyl Diels-Alder and Carbonyl-Ene Reactions Supported on Graphite //Liebigs Ann. 2006. Vol. 1996, № 5. P. 743–744.81.Michel Lerestif J., Feuillet S., Pierre Bazureau J., Hamelin J. Puff H., Hamelin J.Novel Synthesis of Protected Methyl 4-Hydroxy-1,2,3,4-tetrahydroisoquinoline-3carboxylate via Cleavage of Functionalized Dihydrooxazoles (Oxazolines) // J. Chem.Res. 1999.
Vol. 38, № 1. P. 32.82.Arshi N., Ahmed F., Kumar S., Anwar M.S., Lu J., Koo B.H., Lee C.G.Microwave assisted synthesis of gold nanoparticles and their antibacterial activityagainst Escherichia coli (E. coli) // Current Applied Physics. 2011. Vol. 11, № 1SUPPL. P. S360–S363.83.Mallikarjuna N.N., Varma R.S. Microwave-assisted shape-controlled bulksynthesis of noble nanocrystals and their catalytic properties // Cryst.
Growth Des.2007. Vol. 7, № 4. P. 686–690.84.Kundu S., Liang H. Polyelectrolyte-mediated non-micellar synthesis ofmonodispersed “aggregates” of gold nanoparticles using a microwave approach //Colloids Surfaces A Physicochem. Eng. Asp. 2008. Vol. 330, № 2-3. P. 143–150.85.Lee J.H., Hong S.K. Kim J. M., Ko W.B. Synthesis of Gold Nanoparticles UsingPluronic®F127NF Under Microwave Irradiation and Catalytic Effects // J. Nanosci.Nanotechnol. 2011. Vol.
11, № 1. P. 734–737.86.Baruwati B., Varma R. High Value Products from Waste: High value productsfrom waste: Grape pomace extract-a three-in-one package for the synthesis of metalnanoparticles // ChemSusChem. 2009. Vol. 2, № 11. P. 1041–1044.11387.Pal A., Shah S., Devi S. Synthesis of Au, Ag and Au–Ag alloy nanoparticles inaqueous polymer solution // Colloids Surfaces A Physicochem. Eng. Asp.