Диссертация (1150342), страница 18
Текст из файла (страница 18)
2007. Vol.302, № 1-3. P. 51–57.88.Kou J., Varma R.S. Beet juice utilization: Expeditious green synthesis of noblemetal nanoparticles (Ag, Au, Pt, and Pd) using microwaves // RSC Adv. 2012. Vol. 2,№ 27. P. 10283.89.Mehta S.K., Gupta S. Time-efficient microwave synthesis of Pd nanoparticles andtheir electrocatalytic property in oxidation of formic acid and alcohols in alkaline media// J. Appl. Electrochem. 2011.
Vol. 41, № 12. P. 1407–1417.90.Nishioka M., Miyakawa M., Daino Y., Kataoka H., Koda H., Sato K., SuzukiT.M. Single-mode microwave reactor used for continuous flow reactions under elevatedpressure // Ind. Eng. Chem. Res. 2013. Vol. 52, № 12. P. 4683–4687.91.Liu Y.-Q., Zhang M., Wang F.-X., Pan G.-B. Facile microwave-assisted synthesisof uniform single-crystal copper nanowires with excellent electrical conductivity // RSCAdv.
2012. Vol. 2, № 30. P. 11235-11237.92.Fan C., Li W., Zhao S., Chen J., Li X. Efficient one pot synthesis of chitosan-induced gold nanoparticles by microwave irradiation // Mater. Lett. 2008. Vol. 62, №20. P. 3518–3520.93.Kundu S., Liang H. Shape-controlled synthesis of triangular gold nanoprismsusing microwave irradiation. // J. Nanosci.
Nanotechnol. 2010. Vol. 10, № 2. P. 746–754.94.Wang J., Wang Z. Rapid synthesis of hexagon-shaped gold nanoplates bymicrowave assistant method // Mater. Lett. 2007. Vol. 61, № 19-20. P. 4149–4151.95.Uppal M.A., Kafizas A., Ewing M.B., Parkin I.P. The effect of initiation methodon the size, monodispersity and shape of gold nanoparticles formed by the Turkevichmethod // New J.
Chem. 2010. Vol. 34, № 12. P. 2906.96.Zhang Z., Jia J., Ma Y., Weng J., Sun Y., Sun L. Microwave-assisted one-steprapid synthesis of folic acid modified gold nanoparticles for cancer cell targeting anddetection // Medchemcomm. 2011. Vol. 2, № 11. P. 1079.11497.Luo Y. A simple microwave-based route for size-controlled preparation ofcolloidal Pt nanoparticles // Mater.
Lett. 2007. Vol. 61, № 8-9. P. 1873–1875.98.Wang H., Wangl L., Nemoto Y., Suzuki N., Yamauchi Y. Microwave-assistedrapid synthesis of platinum nanoclusters with high surface area // J NanosciNanotechnol. 2010. Vol. 10, № 10. P. 6489–6494.99.Mehta S.K., Gupta S. Time-efficient microwave synthesis of Pd nanoparticles andtheir electrocatalytic property in oxidation of formic acid and alcohols in alkaline media// J.
Appl. Electrochem. 2011. Vol. 41, № 12. P. 1407–1417.100. Zhang H., Yin Y., Hu Y., Li C., Wu P., Wei S., Cai C. Pd@Pt core-shellnanostructures with controllable composition synthesized by a microwave method andtheir enhanced electrocatalytic activity toward oxygen reduction and methanol oxidation// J. Phys. Chem. C. 2010. Vol. 114, № 27. P.
11861–11867.101. Hu X.L., Zhu Y.J., Wang S.W. Sonochemical and microwave-assisted synthesisof linked single-crystalline ZnO rods // Mater. Chem. Phys. 2004. Vol. 88, № 2-3. P.421–426.102. Pires F.I., Joanni E., Savu R., Zaghete M.A., Longo E., Varela J.A. Microwaveassisted hydrothermal synthesis of nanocrystalline SnO powders // Mater. Lett. 2008.Vol. 62, № 2. P. 239–242.103. Jouhannaud J., Rossignol J., Stuerga D. Rapid synthesis of tin (IV) oxidenanoparticles by microwave induced thermohydrolysis // J.
Solid State Chem. 2008.Vol. 181, № 6. P. 1439–1444.104. Tripathy S.K., Mishra A., Jha S.K., Wahab R., Al-Khedhairy A.A. Microwaveassisted hydrothermal synthesis of mesoporous SnO2 nanoparticles for ethanol sensingand degradation // J. Mater. Sci. Mater. Electron. 2013. Vol. 24, № 6. P. 2082–2090.105. Qui G. et al. Microwave-Assisted Hydrothermal Synthesis of Nanosized Fe2O3for catalysts and adsorbents// J. Phys. Chem.
C. 2011. Vol. 115, № 40. P. 19626–19631.106. Muraliganth T., Vadivel Murugan A., Manthiram A. Facile synthesis of carbondecorated single-crystalline Fe3O4 nanowires and their application as high performanceanode in lithium ion batteries // Chem. Commun. 2009. Vol. 148, № 47. P. 7360 -7362.115107.
Volanti D.P., Orlandi M., Andres J., Longo E. Efficient microwave-assistedhydrothermal synthesis of CuO sea urchin-like architectures via a mesoscale selfassembly // CrystEngComm. 2010. Vol. 12, № 6. P. 1696–1699.108. Arin M., Lommens P., Hopkins S.C., Pollefeyt G., Van der Eycken, J., Ricart S.,Granados X., Glowacki B.A., Van Driessche I. Deposition of photocatalytically activeTiO2 films by inkjet printing of TiO2 nanoparticle suspensions obtained frommicrowave-assisted hydrothermal synthesis // Nanotechnology. 2012.
Vol. 23, № 16. P.165603.109. Lehnen T., Zopes D., Mathur S. Phase-selective microwave synthesis and inkjetprinting applications of Zn2SnO4 (ZTO) quantum dots // J. Mater. Chem. 2012. Vol.22, № 34. P. 17732.110. Shao M., Xu F., Peng Y., Wu J., Li Q., Zhang S., Qian Y. Microwave-templatedsynthesis of CdS nanotubes in aqueous solution at room temperature // New J. Chem.2002.
Vol. 26, № 10. P. 1440–1442.111. Mu C.F., Yao Q.Z., Qu X.F., Zhou G.T., Li M.L., Fu S.Q. Controlled synthesis ofvarious hierarchical nanostructures of copper sulfide by a facile microwave irradiationmethod // Colloids Surfaces A Physicochem.
Eng. Asp. 2010. Vol. 371, № 1-3. P. 14–21.112. Zhu J., Xu J., Liao X. Preparation of CdS and ZnS nanoparticles using microwaveirradiation // Mater. Lett. 2001. Vol. 47, № 1-2. P. 25–29.113. Al Juhaiman L., Scoles L., Kingston D., Patarachao B., Wang D., Bensebaa F.Green synthesis of tunable Cu(In1−xGax)Se2 nanoparticles using non-organic solvents// Green Chem.
2010. Vol. 12, № 7. P. 1248.114. Huang L., Han H. One-step synthesis of water-soluble ZnSe quantum dots viamicrowave irradiation // Mater. Lett. 2010. Vol. 64, № 9. P. 1099–1101.115. Li L., Qian H., Ren J., M. Bruchez, Jr., Moronne M. et al. Rapid synthesis ofhighly luminescent CdTe nanocrystals in the aqueous phase by microwave irradiationwith controllable temperature // Chem. Commun. 2005. Vol. 281, № 4. P.
528.116116. Qian H., Qiu X., Li L., Ren J. Microwave-assisted aqueous synthesis: A rapidapproach to prepare highly luminescent ZnSe(S) alloyed quantum dots // J. Phys. Chem.B. 2006. Vol. 110, № 18. P. 9034–9040.117. He Y., Lu H.T., Sai L.M., Lai W.Y., Fan Q.Li., Wang L.H., Huang W.Microwave-assisted growth and characterization of water-dispersed CdTe/CdS coreshell nanocrystals with high photoluminescence // J. Phys. Chem.
B. 2006. Vol. 110, №27. P. 13370–13374.118. Sai L.M., Kong X.Y. Microwave-assisted synthesis of water-dispersedCdTe/CdSe core/shell type II quantum dots // Nanoscale Res. Lett. 2011. Vol. 6, № 1.P. 399.119. Hu Y., Qian H., Liu Y., Du G., Zhang F., Wang L., Hu X. A microwave-assistedrapid route to synthesize ZnO/ZnS core–shell nanostructures via controllable surfacesulfidation of ZnO nanorods // CrystEngComm. 2011. Vol. 13, № 10. P. 3438.120. Yu W., Tu W., Liu H. Synthesis of Nanoscale Platinum Colloids by MicrowaveDielectric Heating // Langmuir. 1999. Vol.
15, № 1. P. 6–9.121Zhou B., Zhao Y., Pu L., Zhu J.J. Microwave-assisted synthesis ofnanocrystalline Bi2Te 3 // Mater. Chem. Phys. 2006. Vol. 96, № 2-3. P. 192–196.122. Tai G., Zhou J., Guo W. Inorganic salt-induced phase control and opticalcharacterization of cadmium sulfide nanoparticles. // Nanotechnology.
IOP Publishing,2010. Vol. 21, № 17. P. 175601.123. Flynn B., Wang W., Chang C.H., Herman G.S. Microwave assisted synthesis ofCu2ZnSnS4 colloidal nanoparticle inks // Phys. Status Solidi Appl. Mater. Sci. 2012.Vol. 209, № 11. P. 2186–2194.124. Lu Q.Y., Gao F., Komarneni S. Microwave-assisted synthesis of one-dimensionalnanostructures // J.
Mater. Res. 2004. Vol. 19, № 6. P. 1649–1655.125. Ferrer E., Nater S., Rivera D., Colon J.M., Zayas F., Gonzalez M., Castro M.E.Turning “on” and “off” nucleation and growth: Microwave assisted synthesis of CdSclusters and nanoparticles // Mater. Res. Bull. 2012. Vol. 47, № 11.
P. 3835–3843.126. Hu X., Yu J.C. High-yield synthesis of nickel and nickel phosphide nanowires viamicrowave-assisted processes // Chem. Mater. 2008. Vol. 20, № 21. P. 6743–6749.117127. Hasegawa Y. et al. Synthesis and photophysical properties of EuS nanoparticlesfrom the thermal reduction of novel Eu(III) complex // J. Phys. Chem. B. 2006. Vol.110, № 18. P. 9008–9011.128. Grisaru H., Palchik O., Gedanken A., Palchik V., Slifkin M., Weiss A. M.Microwave-assisted polyol synthesis of CuInTe2 and CuInSe2 nanoparticles. // Inorg.Chem. 2003. Vol. 42, № 22.
P. 7148–7155.129. Wu J. D., Wang L. T., Gau C. Synthesis of CuInGaSe2 nanoparticles by modifiedpolyol route // Sol. Energy Mater. Sol. Cells. 2012. Vol. 98. P. 404–408.130. Tongpeng S., Sarakonsri T., Kurata H., Shinoda Y. Synthesis and characterizationof CuGaSe2 nanoparticles prepared by a microwave method// J.