Диссертация (1150338), страница 15
Текст из файла (страница 15)
The use of nanoparticles in electroanalysis: a review //Analytical and Bioanalytical Chemistry. ‒ 2006. ‒ T. 384, № 3. ‒ C. 601-619.36. Wang J. Electrochemical biosensing based on noble metal nanoparticles //Microchimica Acta. ‒ 2012. ‒ T. 177, № 3-4.
‒ C. 245-270.37. Stozhko N. Y., Malakhova N. A., Byzov I. V., Brainina K. Z. Electrodes in strippingvoltammetry: from a macro- to a micro- and nano-structured surface // Journal ofAnalytical Chemistry. ‒ 2009. ‒ T. 64, № 11. ‒ C. 1148-1157.38. Kahk J. M., Rees N. V., Pillay J., Tshikhudo R., Vilakazi S., Compton R. G.Electron transfer kinetics at single nanoparticles // Nano Today. ‒ 2012. ‒ T. 7, № 3.
‒C. 174-179.39. Understanding Voltammetry: Simulation of Electrode Processes. / Compton R. G.,Laborda E., Ward K. R.: Imperial College Press, 2013.40. Arrigan D. W. M. Nanoelectrodes, nanoelectrode arrays and their applications //Analyst. ‒ 2004. ‒ T. 129, № 12. ‒ C. 1157-1165.41. Campbell F., Compton R. The use of nanoparticles in electroanalysis: an updatedreview // Analytical and Bioanalytical Chemistry. ‒ 2010. ‒ T.
396, № 1. ‒ C. 241-259.12342. Streeter I., Compton R. G. Diffusion-Limited Currents to Nanoparticles of VariousShapes Supported on an Electrode; Spheres, Hemispheres, and Distorted Spheres andHemispheres // The Journal of Physical Chemistry C. ‒ 2007. ‒ T. 111, № 49. ‒ C.18049-18054.43.
Campbell F. W., Belding S. R., Baron R., Xiao L., Compton R. G. HydrogenPeroxide Electroreduction at a Silver-Nanoparticle Array: Investigating NanoparticleSize and Coverage Effects // The Journal of Physical Chemistry C. ‒ 2009. ‒ T. 113, №21. ‒ C. 9053-9062.44. Ward Jones S. E., Campbell F. W., Baron R., Xiao L., Compton R. G. Particle Sizeand Surface Coverage Effects in the Stripping Voltammetry of Silver Nanoparticles:Theory and Experiment // The Journal of Physical Chemistry C. ‒ 2008. ‒ T.
112, № 46.‒ C. 17820-17827.45. Fan F.-R. F., Kwak J., Bard A. J. Single Molecule Electrochemistry // Journal of theAmerican Chemical Society. ‒ 1996. ‒ T. 118, № 40. ‒ C. 9669-9675.46. Fan F.-R. F., Bard A. J. Electrochemical Detection of Single Molecules // Science. ‒1995. ‒ T. 267, № 5199. ‒ C. 871-874.47. Amatore C., Bouret Y., Maisonhaute E., Goldsmith J. I., Abruña H. D.
UltrafastVoltammetry of Adsorbed Redox Active Dendrimers with Nanometric Resolution: AnElectrochemical Microtome // ChemPhysChem. ‒ 2001. ‒ T. 2, № 2. ‒ C. 130-134.48. Amatore C., Grün F., Maisonhaute E. Electrochemistry within a Limited Number ofMolecules: Delineating the Fringe Between Stochastic and Statistical Behavior //Angewandte Chemie International Edition. ‒ 2003. ‒ T. 42, № 40. ‒ C. 4944-4947.49. Gokoglan T.
C., Soylemez S., Kesik M., Toksabay S., Toppare L. Seleniumcontaining conducting polymer based pyranose oxidase biosensor for glucose detection// Food Chemistry. ‒ 2015. ‒ T. 172, № 0. ‒ C. 219-224.50. Attar A., Emilia Ghica M., Amine A., Brett C. M. A. Poly(neutral red) basedhydrogen peroxide biosensor for chromium determination by inhibition measurements //Journal of Hazardous Materials. ‒ 2014. ‒ T. 279, № 0. ‒ C.
348-355.51. Cabaj J., Sooducho J. Layered Biosensor Construction //. ‒ 2013.10.5772/52568.12452. Koposova E., Liu X., Kisner A., Ermolenko Y., Shumilova G., Offenhäusser A.,MourzinaY.Bioelectrochemicalsystemswitholeylamine-stabilizedgoldnanostructures and horseradish peroxidase for hydrogen peroxide sensor // Biosensorsand Bioelectronics. ‒ 2014. ‒ T. 57.
‒ C. 54-58.53. Koposova E., Shumilova G., Ermolenko Y., Kisner A., Offenhäusser A., MourzinaY. Direct electrochemistry of cyt c and hydrogen peroxide biosensing on oleylamineand citrate-stabilized gold nanostructures // Sensors and Actuators B: Chemical. ‒ 2015.‒ T. 207, Part B. ‒ C. 1045-1052.54. Navolotskaya D. V., Toh H.
S., Batchelor–McAuley C., Compton R. G.Voltammetric Study of the Influence of Various Phosphate Anions on SilverNanoparticle Oxidation // ChemistryOpen. ‒ 2015.10.1002/open.201500100. ‒ C. n/an/a.55. Nikolaev K., Ermakov S., Ermolenko Y., Averyaskina E., Offenhäusser A.,Mourzina Y. A novel bioelectrochemical interface based on in situ synthesis of goldnanostructures on electrode surfaces and surface activation by Meerwein's salt. Abioelectrochemical sensor for glucose determination // Bioelectrochemistry.
‒ 2015. ‒T. 105. ‒ C. 34-43.56. Nikolaev K. G., Ermakov S. S., Offenhäusser A., Mourzina Y. Activation of goldnanostructures with Meerwein's salt // Mendeleev Communications. ‒ 2014. ‒ T. 24, №3. ‒ C. 145-146.57. Bracamonte M. V., Bollo S., Labbé P., Rivas G. A., Ferreyra N. F. Quaternizedchitosan as support for the assembly of gold nanoparticles and glucose oxidase:Physicochemical characterization of the platform and evaluation of its biocatalyticactivity // Electrochimica Acta. ‒ 2011. ‒ T. 56, № 3. ‒ C. 1316-1322.58. Crespilho F. N., Emilia Ghica M., Florescu M., Nart F. C., Oliveira O. N., Brett C.M. A.
A strategy for enzyme immobilization on layer-by-layer dendrimer–goldnanoparticleelectrocatalyticmembraneincorporatingredoxmediator//Electrochemistry Communications. ‒ 2006. ‒ T. 8, № 10. ‒ C. 1665-1670.59. Crespilho F. N., Nart F. C., Oliveira O. N., Brett C. M. A. Oxygen reduction anddiffusion in electroactive nanostructured membranes (ENM) using a layer-by-layer125dendrimer-gold nanoparticle approach // Electrochimica Acta. ‒ 2007. ‒ T. 52, № 14.
‒C. 4649-4653.60. Crespilho F. N., Ghica M. E., Gouveia-Caridade C., Oliveira O. N., Jr., Brett C. M.Enzyme immobilisation on electroactive nanostructured membranes (ENM): optimisedarchitectures for biosensing // Talanta. ‒ 2008. ‒ T.
76, № 4. ‒ C. 922-8.61. Dondapati S. K., Lozano-Sanchez P., Katakis I. Controlled electrophoreticdeposition of multifunctional nanomodules for bioelectrochemical applications //Biosens Bioelectron. ‒ 2008. ‒ T. 24, № 1. ‒ C. 55-9.62. Si P., Kannan P., Guo L., Son H., Kim D. H. Highly stable and sensitive glucosebiosensor based on covalently assembled high density Au nanostructures // BiosensBioelectron.
‒ 2011.10.1016/j.bios.2011.02.044.63. Sun J., Zhu Y., Yang X., Li C. Photoelectrochemical glucose biosensorincorporating CdS nanoparticles // Particuology. ‒ 2009. ‒ T. 7, № 5. ‒ C. 347-352.64. Flexer V., Calvo E. J., Bartlett P. N. The application of the relaxation and simplexmethod to the analysis of data for glucose electrodes based on glucose oxidaseimmobilised in an osmium redox polymer // Journal of Electroanalytical Chemistry. ‒2010.
‒ T. 646, № 1-2. ‒ C. 24-32.65. Li W., Yuan R., Chai Y., Zhong H., Wang Y. Study of the biosensor based onplatinum nanoparticles supported on carbon nanotubes and sugar–lectin biospecificinteractions for the determination of glucose // Electrochimica Acta. ‒ 2011. ‒ T. 56, №11. ‒ C. 4203-4208.66. Chen H., Xi F., Gao X., Chen Z., Lin X. Bienzyme bionanomultilayer electrode forglucose biosensing based on functional carbon nanotubes and sugar-lectin biospecificinteraction // Anal Biochem.
‒ 2010. ‒ T. 403, № 1-2. ‒ C. 36-42.67. Dalmasso P. R., Pedano M. L., Rivas G. A. Supramolecular architecture based onthe self-assembling of multiwall carbon nanotubes dispersed in polyhistidine andglucose oxidase: Characterization and analytical applications for glucose biosensing //Biosens Bioelectron. ‒ 2013. ‒ T. 39, № 1. ‒ C. 76-81.12668. Deng L., Shang L., Wang Y., Wang T., Chen H., Dong S.
Multilayer structuredcarbon nanotubes/poly-l-lysine/laccase composite cathode for glucose/O2 biofuel cell //Electrochemistry Communications. ‒ 2008. ‒ T. 10, № 7. ‒ C. 1012-1015.69. Deng C., Chen J., Nie Z., Si S. A sensitive and stable biosensor based on the directelectrochemistry of glucose oxidase assembled layer-by-layer at the multiwall carbonnanotube-modified electrode // Biosens Bioelectron.
‒ 2010. ‒ T. 26, № 1. ‒ C. 213-9.70. Gao Q., Guo Y., Liu J., Yuan X., Qi H., Zhang C. A biosensor prepared by coentrapment of a glucose oxidase and a carbon nanotube within an electrochemicallydeposited redox polymer multilayer // Bioelectrochemistry. ‒ 2011. ‒ T.
81, № 2. ‒ C.109-13.71. Huang J., Yang Y., Shi H., Song Z., Zhao Z., Anzai J.-i., Osa T., Chen Q. Multiwalled carbon nanotubes-based glucose biosensor prepared by a layer-by-layertechnique // Materials Science and Engineering: C. ‒ 2006. ‒ T. 26, № 1. ‒ C. 113-117.72. Komathi S., Gopalan A. I., Lee K.
P. Fabrication of a novel layer-by-layer filmbased glucose biosensor with compact arrangement of multi-components and glucoseoxidase // Biosens Bioelectron. ‒ 2009. ‒ T. 24, № 10. ‒ C. 3131-4.73. Liu G., Lin Y. Amperometric glucose biosensor based on self-assembling glucoseoxidase on carbon nanotubes // Electrochemistry Communications. ‒ 2006. ‒ T. 8, № 2.‒ C. 251-256.74. Sun Y., Wang H., Sun C.
Amperometric glucose biosensor based on layer-by-layercovalent attachment of AMWNTs and IO(4)(-)-oxidized GOx // Biosens Bioelectron. ‒2008. ‒ T. 24, № 1. ‒ C. 22-8.75. Wang Y., Wang X., Wu B., Zhao Z., Yin F., Li S., Qin X., Chen Q. Dispersion ofsingle-walled carbon nanotubes in poly(diallyldimethylammonium chloride) forpreparation of a glucose biosensor // Sensors and Actuators B: Chemical. ‒ 2008. ‒ T.130, № 2. ‒ C. 809-815.76. Moraes M. L., Petri L., Oliveira V., Olivati C.
A., de Oliveira M. C. F., Paulovich F.V., Oliveira O. N., Ferreira M. Detection of glucose and triglycerides using informationvisualization methods to process impedance spectroscopy data // Sensors and ActuatorsB: Chemical. ‒ 2012. ‒ T. 166-167. ‒ C. 231-238.12777. Salimi A., Noorbakhsh A.