Диссертация (1150338), страница 17
Текст из файла (страница 17)
‒ T. 660, № 1. ‒ C. 114-120.115. Saadati S., Salimi A., Hallaj R., Rostami A. Layer by layer assembly of catalaseand amine-terminated ionic liquid onto titanium nitride nanoparticles modified glassycarbon electrode: study of direct voltammetry and bioelectrocatalytic activity // AnalChim Acta. ‒ 2012. ‒ T. 753. ‒ C. 32-41.116. Feng J. J., Xu J. J., Chen H. Y. Direct electron transfer and electrocatalysis ofhemoglobin adsorbed on mesoporous carbon through layer-by-layer assembly // BiosensBioelectron.
‒ 2007. ‒ T. 22, № 8. ‒ C. 1618-24.117. Li F., Shan C., Bu X., Shen Y., Yang G., Niu L. Fabrication and electrochemicalcharacterization of electrostatic assembly of polyelectrolyte-functionalized ionic liquidand Prussian blue ultrathin films // Journal of Electroanalytical Chemistry. ‒ 2008. ‒ T.616, № 1-2.
‒ C. 1-6.118. Chang H., Wang X., Shiu K. K., Zhu Y., Wang J., Li Q., Chen B., Jiang H. Layerby-layer assembly of graphene, Au and poly(toluidine blue O) films sensor forevaluation of oxidative stress of tumor cells elicited by hydrogen peroxide // BiosensBioelectron. ‒ 2013. ‒ T. 41. ‒ C. 789-94.119. Xiang C., Zou Y., Sun L. X., Xu F. Direct electrochemistry and electrocatalysis ofcytochrome c immobilized on gold nanoparticles-chitosan-carbon nanotubes-modifiedelectrode // Talanta. ‒ 2007. ‒ T.
74, № 2. ‒ C. 206-11.120. Ozturk B., Talukdar I., Flanders B. N. The directed-assembly of CdS interconnectsbetween targeted points in a circuit // Applied Physics Letters. ‒ 2005. ‒ T. 86, № 18. ‒C. 183105.121. Ji J., Li P., Sang S., Zhang W., Zhou Z., Yang X., Dong H., Li G., Hu J.Electrodeposition of Au/Ag bimetallic dendrites assisted by Faradaic ACelectroosmosis flow // AIP Advances.
‒ 2014. ‒ T. 4, № 3. ‒ C. 031329.132122. Birol O., Bret N. F., Daniel R. G., Tetsuya D. M. Single-step growth and lowresistance interconnecting of gold nanowires // Nanotechnology. ‒ 2007. ‒ T. 18, № 17.‒ C. 175707.123. Birol O., Ishan T., Bret N. F. Directed growth of diameter-tunable nanowires //Nanotechnology. ‒ 2007. ‒ T. 18, № 36. ‒ C.
365302.124. Nerowski A., Poetschke M., Bobeth M., Opitz J., Cuniberti G. DielectrophoreticGrowth of Platinum Nanowires: Concentration and Temperature Dependence of theGrowth Velocity // Langmuir. ‒ 2012. ‒ T. 28, № 19. ‒ C. 7498-7504.125. Zhang M., Yang X., Zhou Z., Ye X. Controllable growth of gold nanowires andnanoactuatorsviahigh-frequencyACelectrodeposition//ElectrochemistryCommunications. ‒ 2013. ‒ T. 27.
‒ C. 133-136.126. Talukdar I., Ozturk B., Flanders B. N., Mishima T. D. Directed growth of singlecrystal indium wires // Applied Physics Letters. ‒ 2006. ‒ T. 88, № 22. ‒ C. 221907.127. Ranjan N., Vinzelberg H., Mertig M. Growing One-Dimensional MetallicNanowires by Dielectrophoresis // Small.
‒ 2006. ‒ T. 2, № 12. ‒ C. 1490-1496.128. Bangar M. A., Ramanathan K., Yun M., Lee C., Hangarter C., Myung N. V.Controlled Growth of a Single Palladium Nanowire between Microfabricated Electrodes// Chemistry of Materials. ‒ 2004. ‒ T. 16, № 24. ‒ C. 4955-4959.129. Cheng C., Gonela R. K., Gu Q., Haynie D. T. Self-Assembly of MetallicNanowires from Aqueous Solution // Nano Letters. ‒ 2005. ‒ T. 5, № 1. ‒ C. 175-178.130.
Ranjan N., Mertig M., Cuniberti G., Pompe W. Dielectrophoretic Growth ofMetallic Nanowires and Microwires: Theory and Experiments // Langmuir. ‒ 2010. ‒ T.26, № 1. ‒ C. 552-559.131. Cheng Y., Yu G., Tang L., Zhou Y., Zhang G. Self-assembled dendritic nanowiresof Au–Pt alloy through electrodeposition from solution under AC fields // Journal ofCrystal Growth. ‒ 2011.
‒ T. 334, № 1. ‒ C. 181-188.132. Tang L., Yu G., Li X., Chang F., Zhong C.-J. Palladium–Gold Alloy NanowireStructured Interface for Hydrogen Sensing // ChemPlusChem. ‒ 2015. ‒ T. 80, № 4. ‒C. 722-730.133133. Kawasaki J. K., Arnold C. B. Synthesis of Platinum Dendrites and Nanowires ViaDirected Electrochemical Nanowire Assembly // Nano Letters. ‒ 2011. ‒ T.
11, № 2. ‒C. 781-785.134. Yi X., Yu G., Chang F., Xie Z. H., Tran T. N., Hu B. N., Zhong C.-J.y Nanowires and Nanodendrites //Chemistry – An Asian Journal. ‒ 2014. ‒ T. 9, № 9. ‒ C. 2612-2620.135. Lu Y., Ji H.-F. Electric field-directed assembly of gold and platinum nanowiresfrom an electrolysis process // Electrochemistry Communications. ‒ 2008.
‒ T. 10, № 2.‒ C. 222-224.136. Hermanson K. D., Lumsdon S. O., Williams J. P., Kaler E. W., Velev O. D.Dielectrophoretic Assembly of Electrically Functional Microwires from NanoparticleSuspensions // Science. ‒ 2001. ‒ T. 294, № 5544. ‒ C. 1082-1086.137. Liu X., Zhao H., Yang X., Li X., Wang N.
Trailing mobile sinks: A proactive datareporting protocol for Wireless Sensor Networks // The 7th IEEE InternationalConference on Mobile Ad-hoc and Sensor Systems (IEEE MASS 2010)10.1109/MASS.2010.5663998 ‒, 2010. ‒ C. 214-223.138. Nerowski A., Opitz J., Baraban L., Cuniberti G. Bottom-up synthesis of ultrathinstraight platinum nanowires: Electric field impact // Nano Research. ‒ 2013.
‒ T. 6, №5. ‒ C. 303-311.139. Veal E. A., Day A. M., Morgan B. A. Hydrogen Peroxide Sensing and Signaling //Molecular Cell. ‒ 2007. ‒ T. 26, № 1. ‒ C. 1-14.140. Calas-Blanchard C., Catanante G., Noguer T. Electrochemical Sensor andBiosensor Strategies for ROS/RNS Detection in Biological Systems // Electroanalysis. ‒2014. ‒ T. 26, № 6. ‒ C.
1277-1286.141. Bachi A., Dalle-Donne I., Scaloni A. Redox Proteomics: Chemical Principles,Methodological Approaches and Biological/Biomedical Promises // Chemical Reviews.‒ 2013. ‒ T. 113, № 1. ‒ C. 596-698.142. Merksamer P. I., Liu Y., He W., Hirschey M. D., Chen D., Verdin E. The sirtuins,oxidative stress and aging: An emerging link // Aging. ‒ 2013.
‒ T. 5, № 3. ‒ C. 144150.134143. Finkel T., Holbrook N. J. Oxidants, oxidative stress and the biology of ageing //Nature. ‒ 2000. ‒ T. 408, № 6809. ‒ C. 239-247.144. Gulina L. B., Pchelkina A. A., Nikolaev K. G., Navolotskaya D. V., Ermakov S.S., Tolstoy V. P.
A BRIEF REVIEW ON IMMOBILIZATION OF GOLDNANOPARTICLES ON INORGANIC SURFACES AND SUCCESSIVE IONICLAYER DEPOSITION // Reviews on Advanced Materials Science. ‒ 2016. ‒ T. 44, №1. ‒ C. 46-53.145. Ermakov S. S., Nikolaev K. G., Tolstoi V. P. Analytical possibilities of Layer-byLayer sensors // RUSS CHEM REV. ‒ 2016. ‒ T. 85, № in press.146. Determination of Aspect-Ratio Distribution in Gold Nanowires Using AbsorptionSpectra and Transmission Electron Microscopy Techniques.
/ Omi H.: INTECH OpenAccess Publisher, 2012.147. Dong A., Ye X., Chen J., Kang Y., Gordon T., Kikkawa J. M., Murray C. B. AGeneralized Ligand-Exchange Strategy Enabling Sequential Surface Functionalizationof Colloidal Nanocrystals // Journal of the American Chemical Society. ‒ 2011. ‒ T.133, № 4. ‒ C. 998-1006.148.
Rosen E. L., Buonsanti R., Llordes A., Sawvel A. M., Milliron D. J., Helms B. A.Exceptionally Mild Reactive Stripping of Native Ligands from Nanocrystal Surfaces byUsing Meerwein’s Salt // Angewandte Chemie International Edition. ‒ 2012. ‒ T. 51, №3.
‒ C. 684-689.149. Vartak A. P., Crooks P. A. A Scalable, Enantioselective Synthesis of the α2Adrenergic Agonist, Lofexidine // Organic Process Research & Development. ‒ 2009. ‒T. 13, № 3. ‒ C. 415-419.150. Hoogvliet J. C., Dijksma M., Kamp B., van Bennekom W. P. ElectrochemicalPretreatment of Polycrystalline Gold Electrodes To Produce a Reproducible SurfaceRoughness for Self-Assembly: A Study in Phosphate Buffer pH 7.4 // AnalyticalChemistry.
‒ 2000. ‒ T. 72, № 9. ‒ C. 2016-2021.151. Периодическая система химических элементов Д. И. Менделеева. / СемишинВ. И. ‒ Москва: Химия, 1972. ‒ 188 с.135152. Scanlon M. D., Salaj-Kosla U., Belochapkine S., MacAodha D., Leech D., DingY., Magner E. Characterization of Nanoporous Gold Electrodes for BioelectrochemicalApplications // Langmuir. ‒ 2011. ‒ T. 28, № 4. ‒ C. 2251-2261.153. Cho E. C., Au L., Zhang Q., Xia Y. The Effects of Size, Shape, and SurfaceFunctional Group of Gold Nanostructures on Their Adsorption and Internalization byCells // Small (Weinheim an der Bergstrasse, Germany). ‒ 2010. ‒ T. 6, № 4. ‒ C. 517522.154. Zhang S., Wang N., Yu H., Niu Y., Sun C.
Covalent attachment of glucose oxidaseto an Au electrode modified with gold nanoparticles for use as glucose biosensor //Bioelectrochemistry. ‒ 2005. ‒ T. 67, № 1. ‒ C. 15-22.155. Yang W., Wang J., Zhao S., Sun Y., Sun C. Multilayered construction of glucoseoxidase and gold nanoparticles on Au electrodes based on layer-by-layer covalentattachment // Electrochemistry Communications. ‒ 2006.
‒ T. 8, № 4. ‒ C. 665-672.156. Barsan M. M., David M., Florescu M., Ţugulea L., Brett C. M. A. A new selfassembled layer-by-layer glucose biosensor based on chitosan biopolymer entrappedenzyme with nitrogen doped graphene // Bioelectrochemistry. ‒ 2014. ‒ T. 99, № 0. ‒C. 46-52.157. Swoboda B. E. P., Massey V. Purification and Properties of the Glucose Oxidasefrom Aspergillus niger // Journal of Biological Chemistry. ‒ 1965.
‒ T. 240, № 5. ‒ C.2209-2215.158. Gibson Q. H. Mechanisms of Reaction of Some Flavoprotein Enzymes withOxygen // The Journal of General Physiology. ‒ 1965. ‒ T. 49, № 1. ‒ C. 201-211.159. Shiraishi F. Experimental evaluation of the usefulness of equations describing theapparent maximum reaction rate and apparent Michaelis constant of an immobilizedenzyme reaction // Enzyme and Microbial Technology. ‒ 1993.