Диссертация (1150136), страница 14
Текст из файла (страница 14)
Итак, представление (5.11), действительно, ошибочное, но можнозаметить, что альтернативное ему, а именноdμ̃P(f) = (1− θ){(1/θ)dθ + [m/(1− θ)]dθ + dФ}(5.14)приводит к получению соотношения:(1/θ)dθ + [m/(1− θ)]dθ + dФ = dЕ ,(5.15)т.е. к ур-нию (5.9) для dθ/dЕ, применявшемуся в данной диссертации иприведшему к правильному значению δ ≈ 131 мВ (при m = 1). Такимобразом, налицо веские основания полагать определение (5.14) корректным,как и процедуру выкладок, проведенных в представленной диссертации.104СПИСОК ЛИТЕРАТУРЫ[1] Scrosati B., Electrochemical Properties of Conducting Polymers. // Prog. SolidState Chem. 1988. V.
18. P. 71-77.[2] Genies E.M., Hany P., Santier C. A Rechargeable Battery of the TypePolyaniline Propylene Carbonate - LiClO4 - Li-Al. // J. Appl. Electrochem. 1988.V. 18. P. 751-756.[3] Fauvarque J.F. Potential Uses of Conducting Polymers for ElectrochemicalEnergy-Storage.
// J. ChimPhysPcb. 1989. V. 86 P. 5-29.[4] Echigo Y., Asami K., Takahashi H., Inoue K., Kabata T., Kimura O., OhsawaT. Ion Rechargeable Batteries Using Synthetic Organic Polymers. // Synthetic Met.1993. V. 57. P. 3611-3616.[5] Roth S., Graupner W. Conductive Polymers - Evaluation of IndustrialApplications. // Synthetic Met. 1993. V. 57.
P. 3623-3631.[6] Oyama N., Tatsuma T., Sato T., Sotomura T. Dimercaptan-PolyanilineComposite Electrodes for Lithium Batteries with High-Energy Density. // Nature.1995. V. 373-374. P. 598, 196.[7] Barsukov V., Chivikov S., Barsukov I., Motronyuk T. On the perspectives ofapplication of monomer and conductive polymer materials for developing metalfree and semi-metal rechargeable batteries. // Nato Asi 3 High Tech.1996. V. 6. P.419-432.[8] Anderson M.R., Mattes B.R., Reiss H., Kaner R.B. Gas Separation Membranes a Novel Application for Conducting Polymers. // Synthetic Met.
1991. V. 41. P.1151-1154.[9] Mattes B.R., Anderson M.R., Conklin J.A., Reiss H., Kaner R.B. MorphologicalModification of Polyaniline Films for the Separation of Gases. // SyntheticMet.1993. V. 57. P. 3655-3660.[10] Boyle A., Genies E.M., Lapkowski M. Application of Electronic ConductingPolymers as Sensors - Polyaniline in the Solid-State for Detection of SolventVapors and Polypyrrole for Detection of Biological Ions in Solutions.
// SyntheticMet. 1989. V. 28. P. 769-774.[11] Ikariyama Y., Heineman W.R. Polypyrrole Electrode as a Detector forElectroinactive Anions by Flow-Injection Analysis. // Anal. Chem. 1986. V. 58. P.1803-1806.105[12] Lyons M.E.G., Lyons C.H., Fitzgerald C., Bartlett P.N. Conducting-PolymerBased Electrochemical Sensors - Theoretical-Analysis of the Transient CurrentResponse .// J. Electroanal. Chem. 1994. V. 365. P.
29-34.[13] Wrighton M.S. Surface Functionalization of Electrodes with MolecularReagents. // Science 1986. V. 231. P. 32-37.[14] Dietrich M., Heinze J. Poly(4,4'-Dimethoxybithiophene) - a New ConductingPolymer with Extraordinary Redox and Optical-Properties. // Synthetic Met. 1991.V. 41. P. 503-506.[15] Kulesza P.J., Miecznikowski K., Chojak M., Malik M.A., Zamponi S., MarassiR. Electrochromic features of hybrid films composed of polyaniline and metalhexacyanoferrate.
// Electrochim. Acta. 2001. V. 46. P. 4371-4378.[16] Малев В.В., Кондратев В.В., Тимонов А.М. Полимер-МодифицированныеЭлектроды. Санкт-Петербург 2012, C.18-19.[17] Shirakawa H., Louis E.J., MacDiarmid A., Chiang C.K., Heeger A.J.Synthesis of electrically conducting organic polymers: halogen derivatives ofpolyacetylene, (CH)x. // J. Chem. Soc., Chem. Commun. 1977. V.
285.P. 578-580.[18] Vorotyntsev M.A., Daikhin L.I., Levi M.D. Isotherms of electrochemicaldoping and cycling voltammograms of electroactive polymer films. // J.Electroanal. Chem. 1992. V. 332. P. 213-235.[19] Malev V.V., Levin O.V., Vorotyntsev M.A. Model treatment of double layercharging in electroactive polymer films with two kinds of charge carriers. //Electrochim. Acta. 2006. V.
52. P. 133-151.[20] Malev V.V., Levin O.V. Criteria of the absence of short-range interactionswithin electroactive polymer films. // Electrochim. Acta. 2012. V. 80. P. 426-431.[21] Heinze J., Frontana-Uribe B.A., Ludwigs S. Electrochemistry of ConductingPolymers – Persistent Models and New Concepts. // Chem. Rev. 2010. V. 110. P.4724-4771.[22] Malev V.V.
Reformulation of charge transfer and material balance equationsof polaron-conducting polymer films. // Electrochim. Acta. 2015. V. 179. P. 288296.106[23] Komkova M.A., Karyakina E.E., Karyakin A.A. Power Generation versusConventional Potentiostatic Operation of Prussian Blue Based (Bio)Sensors. // J.Electroanalysis. 2017. V. 29.
P. 1-5.[24] Karyakin A.A. Advances of Prussian blue and its analogues in (bio)sensors. //J. Current opinion in electrochemistry. 2017. V. 5. P. 92-98.[25] Komkova M.A., Karyakina E.E., Karyakin A.A. Noiseless Performance ofPrussian Blue Based (Bio)sensors through Power Generation. // J. Anal. Chem.2017. V. 89. P. 6290–6294.[26] Lukacheva L. V., Zakemovskaya A.
A., Karyakina E. E., Zorov I. N., SinitsynA. P., Sukhacheva M. V., Netrusov A. I., Karyakin A. A. Determination of glucoseand lactose in food products with the use of biosensors based on Berlin blue. // J.Anal. Chem. 2007. V. 62. P. 388-393.[27] Karyakin A.A., Puganova E.A., Bolshakov I.A., Karyakina E.E.Electrochemical sensor with record performance characteristics. // Angew.
Chem.Int. Ed. 2007. V. 46. P. 7678 –7680.[28] Borisova A.V., Karyakina E.E., Cosnier S., Karyakin A.A. Current-FreeDeposition of Prussian Blue with Organic Polymers: Towards Improved Stabilityand Mass Production of the Advanced Hydrogen Peroxide Transducer. // J.Electroanalysis. 2009. V. 21. No. 3-5, 409 – 414[29] Voronin O.G., Hartmann.A., Steinbach C., Karyakin A.A., Khokhlov A.R.,Kranz C. Prussian Blue-modified ultramicroelectrodes for mapping hydrogenperoxide in scanning electrochemical microscopy (SECM). // Electrochem.Commun. 2012. V.
23. P. 102-105.[30] Zolotukhina E.V., Vorotyntsev M.A., Bezverkhyy I.S., Borisova A.V., KaryakinA.A., Zolotov Yu. A. Composite materials based on Prussian Blue nanoparticles andpolypyrrole for design of a highly stable sensor for hydrogen peroxide. // DokladyPhysical Chemistry. 2012. V. 444.
P. 75-78.[31] Karyakin A.A. Principles of direct (mediator free) bioelectrocatalysis. // J.Bioelectrochemistry. 2012. V. 88. P. 70-75.[32] Karyakin A.A. Chemical and biological sensors based on electroactiveinorganic polycrystals. // ELSEVIER ACADEMIC PRESS INC. USA, CA 2008.[33] Kulesza P. J., Zamponi S., Malik M.A. Spectroelectrochemical identity ofPrussian blue films in various electrolytes: comparison of time-derivative107voltabsorptometric responses with conventional cyclic voltammetry. // J. SolidState Electrochem.
1997. V. 1. P. 88-93.[34] Laviron E. Adsorption, autoinhibition and autocatalysis in polarography andin linear potential sweep voltammetry. // Journal of Electroanalytical Chemistryand Interfacial Electrochemistry. 1974. V. 52. P. 355-393.[35] Laviron E. Surface linear potential sweep voltammetry: Equation of the peaksfor a reversible reaction when interactions between the adsorbed molecules aretaken into account.
// Journal of Electroanalytical Chemistry and InterfacialElectrochemistry. 1974. V. 52. P. 395-402.[36] Kulesza P.J., Doblhofer K. The membrane properties of Prussian Blue filmson electrodes. // J. Electroanal. Chem. 1989. V. 274. P. 95-105.[37] Kondratiev V.V., Tikhomirova A.V., Malev V.V. Study of Charge TransferProcesses in Prussian Blue Film Modified Electrodes. // Electrochimica Acta.1999. V. 45. P.751-757.[38] Malev V.V., Levin O.V., Vorotyntsev M.A.
Effect of interparticle interactionson the rate of injection of charge carriers into electroactive polymer films. //Russian Journal of electrochemistry. 2007. V. 43. P. 1016-1025.[39] Malev V.V., Levin O.V., Timonov A.M. Quasi-equilibrium voltammetric curvesresulting from the existence of two immobile charge carriers within electroactivepolymer films. // Electrochim. Acta. 2013. V. 108. P. 313-320.[40] Goldsby K.A., Blaho J.K., Hoferkamp L.A.
Oxidation ofnickel(II)bis(salicylaldimine) complexes: solvent control of the ultimate redox site.// Polyhedron. 1989. V. 8. P. 113.[41] Dahm C.E., Peters D.G., Simonet J., Electrochemical and spectroscopiccharacterization of anodically formed nickel salen polymer films on glassy carbon,platinum, and optically transparent tin oxide electrodes in acetonitrile containingtetramethylammonium tetrafluoroborate.
// J. Electroanal. Chem. 1996. V. 410. P.163.[42] Vilas-Boas M., Freire C., Castro B., Hillman A.R., Electrochemicalcharacterization of a novel salen-type modified electrode. // Journal of PhysicalChemistry. 1998. V. 102. P. 8533.108[43] Malev V.V., Levin O.V., Kondratiev V.V. Voltammetry of electrodes modifiedwith pristine and composite polymer films; theoretical and experimental aspects. //Electrochim.