Диссертация (1149766), страница 5
Текст из файла (страница 5)
 ýòîì ñëó÷àå p1 = p2 =0,ρ = p0 è~ in = p30 (−βin , αin , 0),E~ tr =Ep30(−βin + αin a, +αin + βin a, 0),1 + a2ap30~Er =(−βr a − αr , αr a − βr , 0).1 + a2Òàêèì îáðàçîì,~ tr =E1 ~a ~ ~E+Q, Q ≡ p30 (αin , βin , 0),in221+a1+a~ r çíàêà âåëè÷èíû x3 íà ïðîòèâîïîëîæíûéa ïðè çàìåíå â E~r =Ea2 ~a ~E−Q.in1 + a21 + a2Ìû âèäèì, ÷òî ïðè ðàññåÿíèè âîëíû, êîòîðàÿ äâèæåòñÿ ïåðïåíäèêóëÿðíîïëîêîñòè, êðîìå îáû÷íûõ äëÿ ïðîöåññà ðàññåÿíèÿ âîëí, âîçíèêàþò âîëíûñ ïîâåðíóòûì íà óãîë π/2 âåêòîðîì íàïðÿæåííîñòè ýëåêòðè÷åñêîãî ïîëÿ~ in Q~ = 0).(E373.
Äèíàìè÷åñêèé ýôôåêò Êàçèìèðà äëÿ äâóõïàðàëëåëüíûõ ïëîñêîñòåéÊðîìå ñòàòè÷åñêèõ ýôôåêòîâ, íåñîìíåííûé èíòåðåñ ïðåäñòàâëÿþòòàêæå ñëó÷àè âçàèìîäåéñòâèÿ ïîëåé ñ äâèæóùèìèñÿ ìàêðîîáúåêòàìè. Âäàííîé ãëàâå ðàññìîòðèì òàêæå âîçìîæíîñòü èñïîëüçîâàíèÿ ïîäõîäà Ñèìàíçèêà è, â ÷àñòíîñòè ìîäåëè [35] [40], äëÿ îïèñàíèÿ äèíàìè÷åñêèõ ýôôåêòîâ íà ïðèìåðå äâóõ ïàðàëëåëüíûõ äâèæóùèõñÿ ïëîñêîñòåé, âçàèìîäåéñòâóþùèõ ñ áåçìàññîâûì ñêàëàðíûì ïîëåì. ðàìêàõ ðàññìàòðèâàåìîé ìîäåëè äëÿ ýòîãî äîñòàòî÷íî ïðåäïîëîæèòü, ÷òî ôóíêöèÿ Φ(x), îïðåäåëÿþùåé ôîðìó ïîâåðõíîñòè, çàâèñèò îòâðåìåíè.
Äëÿ ñèñòåìû äâóõ äâèæóùèõñÿ íàâñòðå÷ó äðóã äðóãó ñ ïîñòîÿííîé ñêîðîñòüþ v ïàðàëëåëüíûõ ïëîñêîñòåé, äåéñòâèå äåôåêòà çàïèñûâàåòñÿñëåäóþùèì îáðàçîì1SΦ (A, v, a1 , a2 ) =2Z(a1 δ(x3 − vx0 ) + a2 δ(x3 + vx0 ))ε3µνρ Aµ (x)Fνρ (x)dx.Èññëåäîâàíèå ìîäåëè ñ òàêèì äåôåêòîì äîâîëüíî çàòðóäíèòåëüíî èç-çàîòñóòñòâèÿ òðàíñëÿöèîííîé èíâàðèàíòíîñòè ïî êîîðäèíàòàì x0 , x3 . Îãðàíè÷èìñÿ ìîäåëüþ ñêàëÿðíîãî ïîëÿ. ïðîñòåéøåì ñëó÷àå âçàèìîäåéñòâèÿ äâèæóùèõñÿ âäîëü îñè x3 äâóõïåðïåíäèêóëÿðíûõ ê íåé ïëîñêîñòåé ñ áåçìàññîâûì ñêàëàðíûì ïîëåìôóíêöèîíàë äåéñòâèÿ çàïèñûâàåòñÿ â âèäå1S(ϕ, v, a1 , a2 ) =2Z(∂ϕ(x)2 − (a1 δ(x3 − vx0 ) + a2 δ(x3 + vx0 ))ϕ(x)2 )dx38Çäåñü v ñêîðîñòü äâèæåíèÿ, a1 -êîíñòàíòà âçàèìîäåéñòâèÿ ñ ïîëåì ïëîñêîñòè, äâèæóùåéñÿ â ïîëîæèòåëüíîì íàïðàâëåíèè îñè x3 . Ïëîñêîñòü ñêîíñòàíòîé âçàèìîäåéñòâèÿ a2 äâèæåòñÿ â ïðîòèâîïîëîæíîì íàïðàâëåíèè.×òîáû ðåøèòü óðàâíåíèÿ Ýéëåðà-Ëàãðàíæà(∂02 − ∂~ 2 + a1 δ(x3 − vx0 ) + a2 δ(x3 + vx0 ))ϕ(x) = 0äëÿ ðàññìàòðèâàåìîé ìîäåëè, óäîáíî âîñïîëüçîâàòüñÿ ïðåîáðàçîâàíèåìÔóðüå1ϕ(x) =(2π)2Zϕ(x0 , x3 ; k1 , k2 )e−i(k1 x1 +k2 x2 ) dk1 dk2è ïåðåéòè îò êîîðäèíàò x0 , x3 ê íîâûì êîîðäèíàòàì x+ , x− :x+ ≡ x3 − vx0 , x− ≡ x3 + vx0 , ∂0 = v(∂− − ∂+ ), ∂3 = ∂+ + ∂+ ,∂02 − ∂32 = (v 2 − 1)(∂+2 + ∂−2 ) − 2(v 2 + 1)∂+ ∂− . òåðìèíàõ ýòèõ ïåðåìåííûõ óðàâíåíèå Ýéëåðà-Ëàãðàíæà ïåðåïèñûâàåòñÿâ âèäå((v 2 − 1)(∂+2 + ∂−2 ) − 2(v 2 + 1)∂+ ∂− + k 2 + a1 δ(x+ ) + a2 δ(x− ))ϕk (x) = 0,(3.1)ãäå ìû âîñïîëüçîâàëèñü îáîçíà÷åíèÿìè ϕk (x) = ϕ(x+ , x− , k1 , k2 ) è k =pk12 + k22 .
Ìû ïîñòðîèì ðåøåíèå ýòîãî óðàâíåíèÿ â âèäå ðÿäà òåîðèè âîç(0)ìóùåíèé. Åñëè èçâåñòíî íà÷àëüíîå ïðèáëèæåíèå ϕk (x), êîòîðîå ÿâëÿåòñÿðåøåíèåì óðàâíåíèÿ (3.1) ïðè a1 = a2 = 0, òî çàäà÷à ñâîäèòñÿ ê âû÷èñëåíèþ ôóíêöèè Ãðèíà äâóìåðíîãî ëèíåéíîãî äèôôåðåíöèàëüíîãî îïåðàòîðàñ äâóìÿ äåëüòàîáðàçíûìè ïîòåíöèàëàìè. Îíà ÿâëÿåòñÿ ÷àñòíûì ñëó÷àåìáîëåå îáùåé çàäà÷è íàõîæäåíèÿ ðåøåíèÿ óðàâíåíèÿ→−−−−−[L( ∂ ) + a1 δ(x1 ) + a2 δ(x2 )]G(→x1 , →x2 ) = δ(→x1 − →x2 ).(3.2)39→−→−−Çäåñü →x = (x1 , x2 ), ∂ = (∂1 , ∂2 ), ∂i ≡ ∂/∂xi , i = 1, 2, à L( ∂ ) = L(∂1 , ∂2 )- äèôôåðåíöèàëüíûé îïåðàòîð ïîëèíîìèàëüíîãî âèäà ïî ïðîèçâîäíûì∂1 , ∂2 . Ðåøåíèå óðàâíåíèÿ (3.2) áóäåì èñêàòü â âèäåZ−→−i→−→1−−i→p−xq−x12G(x1 , x2 ) =eG(→p ,→q )dpdq2(2π)−−Ïîäñòàâëÿÿ ýòî âûðàæåíèå â (3.2), ïîëó÷àåì óðàâíåíèå äëÿ G(→p ,→q ):−−−L(i→p )G(→p ,→q ) + a1Z−−G(→p ,→q )dp1 + a2Z−−−−G(→p ,→q )dp2 = δ(→p −→q ) (3.3)Ðåøåíèå ýòîãî óðàâíåíèÿ ïðåäñòàâèì â âèäå ñóììû−−−−−−G(→p ,→q ) = G0 (→q )δ(→p −→q ) + G1 (p1 , →q )δ(p2 − q2 ) +−−−+G2 (p2 , →q )δ(p1 − q1 ) + G3 (→p ,→q)−−−−ãäå ôóíêöèè Gi , 1 ≤ i ≤ 3 íåñèíãóëÿðíû ïðè →p =→q .
Ôóíêöèÿ G(→p ,→q)óäîâëåòâîðÿåò óðàâíåíèþ (3.3) â òîì è òîëüêî â òîì ñëó÷àå, êîãäà äëÿôóíêöèé Gi , i = 0, 1, 2, 3 âûïîëíÿþòñÿ ñîîòíîøåíèÿ−−L(i→q )G0 (→q ) = 1,−−−L(ip1 , iq2 )G1 (p1 , →q ) + a1 G0 (→q ) + a1 J1 (→q ) = 0,−−−L(iq1 , ip2 )G2 (p2 , →q ) + a2 G0 (→q ) + a2 J2 (→q ) = 0,−−−−−L(i→p )G3 (→p ,→q ) + a1 G2 (p2 , →q ) + a2 G1 (p1 , →q )+−−+a1 J32 (p2 , →q ), +a2 J31 (p1 , →q ) = 0.Çäåñü èñïîëüçîâàíû îáîçíà÷åíèÿZZ−−−−q ) = dp1 G1 (p1 , →q ), J2 (→q ) = dp2 G2 (p2 , →q ),J1 (→ZZ−−−−−−q ) = dp1 G3 (→p ,→q ), J31 (p1 , →q ) = dp2 G3 (→p ,→q ).J32 (p2 , →(3.4)40Èç ôîðìóë (3.4) ñëåäóåò, ÷òî−−G0 (→q ) = L(i→q )−1 ,(3.5)−−−G1 (p1 , →q ) = −a1 G0 (p1 , q2 )[G0 (→q ) + J1 (→q )],(3.6)−−−G2 (p2 , →q ) = −a2 G0 (q1 , p2 )[G0 (→q ) + J2 (→q )].(3.7)−−Óðàâíåíèÿ äëÿ J1 (→q ), J2 (→q ) ïîëó÷àåì, èíòåãðèðóÿ ðàâåíñòâà (3.6) è (3.7)ïî p1 , p2 :−−−J1 (→q ) = −a1 g1 (q2 )[G0 (→q ) + J1 (→q )], g1 (q2 ) ≡Z−−−J2 (→q ) = −a2 g2 (q1 )[G0 (→q ) + J2 (→q )], g2 (q1 ) ≡Zdp1 G0 (p1 , q2 ),dp2 G0 (q1 , p2 ).Òàêèì îáðàçîì,−a1 g1 (q2 )G0 (→q)→−,J1 ( q ) = −1 + a1 g1 (q2 )−a2 g2 (q1 )G0 (→q)→−J2 ( q ) = −1 + a2 g2 (q1 )Ïîäñòàâëÿÿ ýòè âûðàæåíèÿ â (3.6) è (3.7), ïîëó÷àåì−a1 G0 (p1 , q2 )G0 (→q)→−G1 (p1 , q ) = −,1 + a1 g1 (q2 )−a2 G0 (q1 , p2 )G0 (→q)→−G2 (p2 , q ) = −.1 + a2 g2 (q1 )Òåïåðü, ïîäñòàâèâ â ïîñëåäíåå èç ðàâåíñòâà (3.4) ñîîòíîøåíèå−−−−−−G3 (→p ,→q ) = G0 (→p )F (→p ,→q )G0 (→q ),(3.8)ïîëó÷èì â ðåçóëüòàòå óðàâíåíèÿ−−−−F (→p ,→q ) + a1 [f2 (p2 , q1 ) + H2 (p2 , →q )] + a2 [f1 (p1 , q2 ) + H1 (p1 , →q )] = 0, (3.9)ãäåf1 (p1 , q2 ) = −a1 G0 (p1 , q2 )a2 G0 (q1 , p2 ), f2 (p2 , q1 ) = −,1 + a1 g1 (q2 )1 + a2 g2 (q1 )41è−H1 (p1 , →q)=Z−−−G0 (→p )F (→p ,→q )dp2 ,−H2 (p2 , →q)=Z−−−G0 (→p )F (→p ,→q )dp1 .(3.10)−−Ìû âèäèì, ÷òî ôóíêöèÿ F (→p ,→q ) çàïèñûâàåòñÿ êàê−−−−F (→p ,→q ) = F1 (p1 , →q ) + F2 (p2 , →q ).Ïîäñòàâèì ýòî ðàâåíñòâî â (3.9).
 ðåçóëüòàòå ñ ó÷åòîì (3.10) ïîëó÷èìóðàâíåíèÿ, êîòîðûì óäîâëåòâîðÿþò ôóíêöèè F1 è F2 :−−−F1 (p1 , →q ) + a2 [f1 (p1 , q2 ) + g2 (p1 )F1 (p1 , →q ) + K1 (p1 , →q )],−−−F2 (p2 , →q ) + a1 [f2 (p2 , q1 ) + g1 (p2 )F2 (p2 , →q ) + K2 (p2 , →q )],(3.11)ãäå ìû ïîëîæèëè−K1 (p1 , →q)=Z−−dp2 G0 (→p )F2 (p2 , →q ),−K2 (p2 , →q)=Z−−dp1 G0 (→p )F1 (p1 , →q ).(3.12)Èç (3.11) ïîëó÷àåì−a2 (f1 (p1 , q2 ) + K1 (p1 , →q ))→−F1 (p1 , q ) = −,1 + a2 g2 (p1 )−a1 (f2 (p2 , q1 ) + K2 (p2 , →q ))→−.F2 (p2 , q ) = −1 + a1 g1 (p2 )(3.13)Èòåðèðóÿ ýòè óðàâíåíèÿ, ëåãêî óáåäèòüñÿ, ÷òî−F1 (p1 , →q ) = F11 (p1 , q1 ) + F12 (p1 , q2 ),−F2 (p2 , →q ) = F21 (p2 , q1 ) + F22 (p2 , q2 ).(3.14)−−−− ñèëó ñèììåòðèè F (→p ,→q ) = F (→q ,→p ), ôóíêöèè F11 (p1 , q1 ), F22 (p2 , q2 )òàêæå îáëàäàþò ñèììåòðèåé îòíîñèòåëüíî ïåðåñòàíîâêè àðãóìåíòîâ, èF12 (p1 , q2 ) + F21 (p2 , q1 ) = F12 (q1 , p2 ) + F21 (q2 , p1 ).42Äëÿ ôóíêöèé Fij ìû ïîëó÷àåì èç ñîîòíîøåíèé (3.12) - (3.14) óðàâíåíèÿa2 K11 (p1 , q1 )a2 (f1 (p1 , q2 ) + K12 (p1 , q2 )), F12 (p1 , q2 ) = −,1 + a2 g2 (p1 )1 + a2 g2 (p1 )a1 K22 (p2 , q2 )a1 (f2 (p2 , q1 ) + K21 (p2 , q1 ))F22 (p2 , q2 ) = −, F21 (p2 , q1 ) = −,1 + a1 g1 (p2 )1 + a1 g1 (p2 )F11 (p1 , q1 ) = −èZ−dp2 G0 (→p )F21 (p2 , q1 ),Z−dp2 G0 (→p )F22 (p2 , q2 ),Z−dp1 G0 (→p )F11 (p1 , q1 ),Z−dp1 G0 (→p )F12 (p1 , q2 ).K11 (p1 , q1 ) =K12 (p1 , q2 ) =K21 (p2 , q1 ) =K22 (p2 , q2 ) =Åñëè ïðåäñòàâèòü ôóíêöèè Fij (pi , qj ) â âèäåa2 Φ11 (p1 , q1 ),(1 + a2 g2 (p1 ))(1 + a2 g2 (q1 ))a2 Φ12 (p1 , q2 )F12 (p1 , q2 ) =,(1 + a2 g2 (p1 ))(1 + a1 g1 (q2 ))a1 Φ21 (p2 , q1 )F21 (p2 , q1 ) =,(1 + a1 g1 (p2 ))(1 + a2 g2 (q1 ))a1 Φ22 (p2 , q2 )F22 (p2 , q2 ) =,(1 + a1 g1 (p2 ))(1 + a1 g1 (q2 ))F11 (p1 , q1 ) =òî ôóíêöèè Φij (pi , qj ) óäîâëåòâîðÿþò ñèñòåìå óðàâíåíèé,−G0 (→p )a1 Φ21 (p2 , q1 )dp2Φ11 (p1 , q1 ) = −,1 + a1 g1 (p2 )Z−G0 (→p )a1 Φ22 (p2 , q2 )dp2Φ12 (p1 , q2 ) = −G0 (p1 , q2 ) −,1 + a1 g1 (p2 )Z−G0 (→p )a2 Φ11 (p1 , q1 )dp1Φ21 (p2 , q1 ) = −G0 (q1 , p2 ) −,1 + a2 g2 (p1 )Z−G0 (→p )a2 Φ12 (p1 , q2 )dp1Φ22 (p2 , q2 ) = −,1 + a2 g2 (p1 )Z43ýêâèâàëåíòíîé óðàâíåíèÿìZΦ11 (p1 , q1 ) =Q1 (p1 , p0 )Φ11 (p0 , q1 )dp0 + D1 (p1 , q1 ),ZΦ12 (p1 , q2 ) = Q1 (p, p0 )Φ12 (p0 , p2 )dp0 − G0 (p1 , q2 ),ZΦ21 (p2 , q1 ) = Q2 (p2 , p0 )Φ21 (p0 , q1 )dp0 − G0 (q1 , p2 ),ZΦ22 (p2 , q2 ) = Q2 (p2 , p0 )Φ22 (p0 , q2 )dp0 + D2 (p2 , q2 ).Çäåñüa2 D1 (p, p0 )dqa1 D2 (p, p0 )0, Q2 (p, p ) =.Q1 (p, p ) =1 + a2 g2 (p0 )1 + a1 g1 (p0 )ZZa1 G0 (p, q)G0 (p0 , q)dqa2 G0 (q, p)G0 (q, p0 )dq00D1 (p, p ) =, D2 (p, p ) =.1 + a1 g1 (q)1 + a2 g2 (q)0Òàêèì îáðàçîì, åñëè íàéäåíû ðåøåíèÿ R1 (p, q), R2 (p, q) äâóõ èíòåãðàëüíûõóðàâíåíèéZRi (p, q) −Qi (p, p0 )Ri (p0 , q1 )dp0 = δ(p − q), i = 1, 2,(3.15)−−òî çàäà÷à âû÷èñëåíèÿ ôóíêöèé Φij (p, q), i, j = 1, 2 è ôóíêöèè F (→p ,→q)ñâîäèòñÿ ê èíòåãðèðîâàíèþ:ZΦii (p, q) = Ri (p, p0 )Di (p0 q)dp0 , i = 1, 2,ZΦij (p, q) = − Ri (p, p0 )G0 (p0 q)dp0 , i, j = 1, 2, i 6= j,è−−F (→p ,→q)=F1 (p1 , p0 )D1 (p0 , q1 )G0 (p0 , q2 )−dp0 +1 + a2 g2 (p1 ) 1 + a2 g2 (q1 ) 1 + a1 g1 (q2 )ZF2 (p2 , p0 )G0 (p0 , q1 )D1 (p0 , q2 )+−dp01 + a1 g1 (p2 ) 1 + a2 g2 (q1 ) 1 + a1 g1 (q2 )Z−−Ïîäñòàâèâ ïîñëåäíåå ðàâåíñòâî â (3.8), ìû ïîëó÷àåì ôóíêöèþ G3 (→p ,→q ).Òàêèì îáðàçîì, íàèáîëåå íåòðèâèàëüíûì â ïîñòðîåíèÿ ðåøåíèÿ óðàâíåíèÿ(3.2) ÿâëÿåòñÿ ðåøåíèå èíòåãðàëüíûõ óðàâíåíèé (3.15).44Ìû ïðèìåíèì òåïåðü ïîëó÷åííûå íàìè îáùèå ðåçóëüòàòû ê àíàëèçóóðàâíåíèÿ (3.1).
Äëÿ íåãî ìû èìååì−−L(i→p ) = (1 − v 2 )(p21 + p22 ) + 2(v 2 + 1)p1 p2 + k 2 = G0 (→p )−1 .Ñëåäîâàòåëüíî,G0 (p1 , p2 ) = G0 (p2 , p1 ), g1 (q) = g2 (q) ≡ g(q), Di (p, p0 ) = D(p, p0 ; ai ).Íåîáõîäèìûå äëÿ ðàñ÷åòà ôóíêöèé g(q), D(p, p0 ; ai ) èíòåãðèðîâàíèÿ óäàåòñÿ âûïîëíèòü, è ìû ïîëó÷àåì ñëåäóþùèå ðåçóëüòàòû:ZπG0 (p, q)dp = p,(4q 2 v 2 + k 2 (v 2 − 1)ZaG0 (p, p0 )G0 (q, p0 ) 0aX(p, a)aX(q, a)D(p, q, a) ≡dp=+,1 + ag(p0 )Y (p, q, a) Y (q, p, a)g(q) ≡ãäåX(z, a) = (1 − v 2 )W (z) − aπ(1 − v 2 )2pW (z)Y (z1 , z2 , a) = 2π(z1 − z2 )g(z1 )−1 ((1 − v 2 )2 a2 π 2 − W (z1 )) ××(2π(1 + v 2 )g(z1 )−1 − (1 + 6v 2 + v 4 )z1 + (1 − v 2 )2 z2 ),W (z) = (1 − v 2 )(1 + v 2 )2 k 2 − 4v 2 z((1 + 6v 2 + v 4 )z − 2π(1 + v 2 )g(z)−1 ).Òàêèì îáðàçîì, äëÿ ÿäåð Q1 , Q2 óðàâíåíèé (3.15) â èíòåðåñóþùåé íàñ çàäà÷å èìåþòñÿ ÿâíûå àíàëèòè÷åñêèå âûðàæåíèÿ.















