Диссертация (1149506), страница 21
Текст из файла (страница 21)
P. 4353–4357.45.Zhu L. et al. Sonochemical synthesis and photoluminescent property of YVO4:Eu nanocrystals// Nanotechnology. IOP Publishing, 2007. Vol. 18, № 5. P. 55604.46.Xu G. et al. Preparation of highly dispersed YAG nano-sized powder by co-precipitationmethod // Mater.
Lett. Elsevier, 2006. Vol. 60, № 7. P. 962–965.47.Li X. et al. Preparation of YAG: Nd nano-sized powder by co-precipitation method // Mater.Sci. Eng. A. Elsevier, 2004. Vol. 379, № 1. P. 347–350.48.Zhang H. et al. Low temperature synthesis of nanocrystalline YVO 4: Eu via polyacrylamide gelmethod // J. Solid State Chem. Elsevier, 2004. Vol. 177, № 8. P.
2649–2654.49.Khristov T.I. et al. Preparation of Zinc Silicate Luminophors by the Sol-Gel Technique // Inorg.Mater. 1996. Vol. 32. P. 80.12750.Pechini M.P.M.P. Method of preparing lead and alkaline earth titanates and niobates andcoating method using the same to form a capacitor: pat. 3,330,697 USA. United States Patent:United States Patent, 1967.51.Kim Y.J. et al.
Morphology and particle size dependent luminescence properties of Y2O3:Euphosphors prepared by various synthetic methods // Morphology and particle size dependentluminescence properties of Y2O3:Eu phosphors prepared by various synthetic methods. 2012.52.Xu Z. et al. Ln3+ (Ln= Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals withmultiform morphologies: Hydrothermal synthesis, growing mechanism, and luminescentproperties // Inorg. Chem. ACS Publications, 2010. Vol. 49, № 14. P.
6706–6715.53.Li Y. et al. Luminescent properties in relation to controllable phase and morphology of LuBO3:Eu3+ nano/microcrystals synthesized by hydrothermal approach // Chem. Mater. ACSPublications, 2009. Vol. 21, № 3. P. 468–475.54.Jung K.Y., Kang Y.C., Park Y.-K. DMF effect on the morphology and the luminescenceproperties of Y2O3:Eu3+ red phosphor prepared by spray pyrolysis // J.
Ind. Eng. Chem.Elsevier, 2008. Vol. 14, № 2. P. 224–229.55.Li G. et al. Shape-controllable synthesis and morphology-dependent luminescence properties ofGaOOH: Dy3+ and β-Ga2O3: Dy3+ // Inorg. Chem. ACS Publications, 2010. Vol. 49, № 4.
P.1449–1457.56.Zhang F. et al. Shape, Size, and Phase Controlled Rare Earth Fluoride Nanocrystals with OpticalUp‐Conversion Properties // Chem. Eur. J. Wiley Online Library, 2009. Vol. 15, № 41. P.11010–11019.57.Wawrzynczyk D. et al. Morphology- and size-dependent spectroscopic properties of Eu3+doped Gd2O3 colloidal nanocrystals // J. Nanoparticle Res. 2014. Vol. 16.58.Ray S., Banerjee A., Pramanik P. Shape controlled synthesis, characterization andphotoluminescence properties of YVO4:Dy3+/Eu3+ phosphors // Mater. Sci. Eng. B. Elsevier,2009.
Vol. 156, № 1. P. 10–17.59.Wang W.-N. et al. Correlations between crystallite/particle size and photoluminescenceproperties of submicrometer phosphors // Chem. Mater. ACS Publications, 2007. Vol. 19, № 7.P. 1723–1730.60.Zhang W.-W.W.-P.W.P. et al.
Optical properties of nanocrystalline Y2O3:Eu depending on itsodd structure // J. Colloid Interface Sci. Elsevier, 2003. Vol. 262, № 2. P. 588–593.61.Singh L.R. et al. Luminescence study on Eu3+ doped Y2O3 nanoparticles: particle size,concentration and core–shell formation effects // Nanotechnology. IOP Publishing, 2008. Vol.19, № 5. P. 55201.62.Mialon G. et al. New insights into size effects in luminescent oxide nanocrystals // J.
Phys.Chem. C. 2009. Vol. 113. P. 18699–18706.63.Jadhav A.P. et al. Effect of different additives on the size control and emission properties ofY2O3: Eu3+ nanoparticles prepared through the coprecipitation method // J. Phys. Chem. C.ACS Publications, 2009. Vol.
113, № 38. P. 16652–16657.12864.Song H. et al. Ultraviolet light-induced spectral change in cubic nanocrystalline Y 2 O 3: Eu 3+// Chem. Phys. Lett. Elsevier, 2003. Vol. 372, № 3. P. 368–372.65.Xu W. et al. Controllable synthesis and size-dependent luminescent properties of YVO4: Eu3+nanospheres and microspheres // J. Phys. Chem.
C. ACS Publications, 2010. Vol. 114, № 33. P.14018–14024.66.Muresan L.E. et al. Effect of the europium doping on the structural and luminescent propertiesof yttrium aluminum garnet // Mater. Sci. Eng. B. Elsevier, 2013. Vol. 178, № 4. P. 248–253.67.Singh N.S. et al. Luminescence, lifetime and quantum yield studies of YVO 4: Ln 3+(Ln 3+=Dy 3+, Eu 3+) nanoparticles: Concentration and annealing effects // Chem. Phys. Lett. Elsevier,2009. Vol. 480, № 4. P.
237–242.68.Kwak M.-G., Park J.-H., Shon S. Synthesis and properties of luminescent Y2O3:Eu (15–25wt%) nanocrystals // Solid State Commun. Elsevier, 2004. Vol. 130, № 3. P. 199–201.69.Ferrari J.L., Pires A.M., Davolos M.R. The effect of Eu3+ concentration on the Y2O3 hostlattice obtained from citrate precursors // Mater. Chem. Phys. Elsevier, 2009. Vol. 113, № 2.
P.587–590.70.In J.-H. et al. Synthesis of nano-sized YAG:Eu 3+ phosphor in continuous supercritical watersystem // J. Supercrit. Fluids. Elsevier, 2007. Vol. 40, № 3. P. 389–396.71.Горячев Б.В. Влияние оптических размеров дисперсной среды на выход люминесценции// Известия Томского политехнического университета. Государственное образовательноеучреждение высшего профессионального образования «Томский политехническийуниверситет», 2005. Vol. 308, № 5.72.Zhou Y.H., Lin J.
Morphology control and luminescence properties of YVO4:Eu phosphorsprepared by spray pyrolysis // Opt. Mater. (Amst). Elsevier, 2005. Vol. 27, № 8. P. 1426–1432.73.Georgescu S. et al. Effects of thermal treatment on the luminescence of YAG: Eu nanocrystalssynthesized by a nitrate-citrate sol-gel method // J. Optoelectron. Adv. Mater. INOE & INFM,2005.
Vol. 7, № 6. P. 2985.74.Iso Y., Takeshita S., Isobe T. Effects of Annealing on the Photoluminescence Properties ofCitrate-Capped YVO4: Bi3+, Eu3+ Nanophosphor // J. Phys. Chem. C. ACS Publications,2014. Vol. 118, № 20. P. 11006–11013.75.Boukerika A., Guerbous L. Annealing effects on structural and luminescence properties of redEu 3+-doped Y 2 O 3 nanophosphors prepared by sol–gel method // J. Lumin. Elsevier, 2014.Vol. 145.
P. 148–153.76.Song W.-S. et al. Tuning of size and luminescence of red Y (V, P) O 4: Eu nanophosphors fortheir application to transparent panels of plasma display // Mater. Chem. Phys. Elsevier, 2012.Vol. 135, № 1. P. 51–57.77.Hreniak D. et al.
Effect of grain size and concentration of active ions on structural and opticalbehavior of Eu 3+-doped Y 3 Al 5 O 12 nanocrystallites // J. Lumin. Elsevier, 2007. Vol. 122.P. 91–94.12978.Kiyokawa Y. et al. Thermal stability and annealing behavior of photoluminescence from Eudoped YAG // Opt. Mater. (Amst). Elsevier, 2014. Vol. 37. P. 493–497.79.Wiglusz R.J., Bednarkiewicz a., Strek W. Role of the sintering temperature and doping level inthe structural and spectral properties of Eu-doped nanocrystalline YVO4 // Inorg.
Chem. ACSPublications, 2011. Vol. 51, № 2. P. 1180–1186.80.Gowd G.S. et al. Effect of doping concentration and annealing temperature on luminescenceproperties of Y2O3:Eu3+ nanophosphor prepared by colloidal precipitation method // J. Lumin.Elsevier, 2012. Vol. 132, № 8. P. 2023–2029.81.Xia G. et al. Sol–gel combustion synthesis and luminescent properties of nanocrystalline YAG:Eu 3+ phosphors // J.
Cryst. Growth. Elsevier, 2005. Vol. 283, № 1. P. 257–262.82.Judd B.R. Optical absorption intensities of rare-earth ions // Phys. Rev. APS, 1962. Vol. 127, №3. P. 750.83.Мак А.А. et al. Лазеры на неодимовом стекле. Наука, 1990.84.Walsh B.M. Judd-Ofelt theory: principles and practices // Advances in Spectroscopy for Lasersand Sensing / ed. Bartolo B.
Di, Forte O. Springer, 2006. 403-433 p.85.Weber M.J. Radiative and multiphonon relaxation of rare-earth ions in Y2O3 // Phys. Rev. APS,1968. Vol. 171, № 2. P. 283.86.Kodaira C. a. et al. Luminescence and energy transfer of the europium (III) tungstate obtainedvia the Pechini method // J. Lumin. Elsevier, 2003. Vol. 101, № 1. P. 11–21.87.De Mello Donegá C., Junior S.A., de Sá G.F. Synthesis, luminescence and quantum yields of Eu(III) mixed complexes with 4, 4, 4-trifluoro-1-phenyl-1, 3-butanedione and 1, 10phenanthroline-N-oxide // J.
Alloys Compd. Elsevier, 1997. Vol. 250, № 1. P. 422–426.88.Petoud S. et al. Luminescent properties of lanthanide nitrato complexes with substituted bis(benzimidazolyl) pyridines // Inorg. Chem. ACS Publications, 1997. Vol. 36, № 7. P. 1345–1353.89.Detrio J.A. Line Strengths for Gd3+ at a C4v Site in SrF2 // Phys. Rev. B. APS, 1971.
Vol. 4, №5. P. 1422.90.Brito H.F., Malta O.L., Menezes J.F.S. Luminescent properties of diketonates of trivalenteuropium with dimethyl sulfoxide // J. Alloys Compd. Elsevier, 2000. Vol. 303. P. 336–339.91.Wiglusz R.J. et al. Comparative studies on structural and luminescent properties ofEu3+:MgAl2O4 and Eu3+/Na+:MgAl2O4 nanopowders and nanoceramics // Opt. Mater.(Amst). Elsevier B.V., 2012. Vol. 35, № 2. P. 130–135.92.Nigam S., Sudarsan V., Vatsa R.K.
Effect of Annealing Temperature on the Structural andPhotoluminescence Properties of Y2Sn2O7: Eu Nanoparticles // Eur. J. Inorg. Chem. WileyOnline Library, 2013. Vol. 2013, № 3. P. 357–363.93.Hreniak D. et al. The size-effect on luminescence properties of BaTiO3:Eu3+ nanocrystallitesprepared by the sol–gel method // J. Alloys Compd. 2004. Vol. 380. P.