Диссертация (1149506), страница 22
Текст из файла (страница 22)
348–351.13094.Carnall W.T., Crosswhite H., Crosswhite H.M. Energy Level Structure and TransitionProbabilities of the Trivalent Lanthanides in LaF-3. 1978.95.Андреева В.Д. et al. Специальные методы рентгенографии и электронномикроскопического исследования материалов // СПб.: Издательство политехническогоуниверситета. 2008.96.Ves S. et al. Rare Earth Aluminum Garnets: Raman and IR Investigation // XVI NationalSymposium on Condensed Matter Physics. 2004. P. 288–291.97.Mączka M. et al. Low-temperature synthesis, phonon and luminescence properties of Eu dopedY3Al5O12 (YAG) nanopowders // Mater.
Chem. Phys. Elsevier, 2014. Vol. 143, № 3. P. 1039–1047.98.Sá Ferreira R. a. et al. A theoretical interpretation of the abnormal 5D0→7F4 intensity based onthe Eu3+ local coordination in the Na9[EuW10O36]·14H2O polyoxometalate // J. Lumin. 2006.Vol. 121, № 2 SPEC. ISS. P. 561–567.99.Malashkevich G.E. et al. Eu3+-based optical centers with a high efficiency of the 5 D 0→ 7 F 4transition in alumina gel films // Opt. Spectrosc.
Springer, 2005. Vol. 98, № 2. P. 190–194.100. Ravichandran D. et al. Fabrication of Y3Al5O12:Eu thin films and powders for field emissiondisplay applications // J. Lumin. Elsevier, 1997. Vol. 71, № 4. P. 291–297.101. Hsu W.-T., Wu W.-H., Lu C.-H. Synthesis and luminescent properties of nano-sizedY3Al5O12:Eu3+ phosphors // Mater. Sci. Eng. B. 2003. Vol. 104. P. 40–44.102. Han R.
et al. Photoluminescence properties of Y3Al5O12: Eu nanocrystallites prepared by coprecipitation method using a mixed precipitator of NH4 HCO3 and NH3·H2O // Mater. Sci.Eng. B. Elsevier, 2010. Vol. 166, № 1. P. 41–45.103. Xia G. et al. Sol-gel combustion synthesis and luminescent properties of nanocrystallineYAG:Eu3+ phosphors // J. Cryst. Growth. 2005. Vol. 283. P. 257–262.104.
Kano T., Shionoya S., Yen W.M. Phosphor handbook // CRC, Boca Rat. 1999. P. 177–200.105. Tu D. et al. Breakdown of Crystallographic Site Symmetry in Lanthanide Doped NaYF4Crystals // Angew. Chemie Int. Ed. Wiley Online Library, 2013. Vol. 52, № 4. P. 1128–1133.106. Elliott R.J. et al. Raman Scattering and Theoretical Studies of Jahn-Teller Induced PhaseTransitions in Some Rare-Earth Compounds // Proc. R. Soc. A Math. Phys. Eng. Sci. The RoyalSociety, 1972. Vol. 328, № 1573. P. 217–266.107. ЛазаревА.Н.,МиргородскийА.П.,МаженовН.А.РЕЗОНАНСНЫЕВЗАИМОДЕЙСТВИЯ ЛОКАЛИЗОВАННЫХ ВИБРАТОРОВ В КРИСТАЛЛАХ ТИПААВ04: КОЛЕБАТЕЛЬНЫЕ СПЕКТРЫ КРИСТАЛЛОВ СО СТРУКТУРОЙ ЦИРКОНАКСЕНОТИМА // Колебания окисных решеток.–Л.: Наука.
1980. P. 72–99.108. Воронько Ю.К. et al. Исследование структурного разупорядочения в кристаллах YVO4,GdVO4 и CaWO4 методом спектроскопии комбинационного рассеяния света // Физикатвердого тела. 2009. Vol. 51, № 9. P. 1776–1782.131109. Dove M.T. Introduction to lattice dynamics. Cambridge university press, 1993. Vol. 4.110. Born M. Dynamical theory of crystal lattices. Oxford Univ. Press, 1966.111. Devaraju M.K., Yin S., Sato T. Morphology control of cerium oxide particles synthesized via asupercritical solvothermal method // ACS Appl. Mater.
Interfaces. ACS Publications, 2009. Vol.1, № 11. P. 2694–2698.112. Huignard A., Franville A., Gacoin, Thierry, Boilot J.-P. Emission Processes in YVO4:EuNanoparticles // J. Phys. Chem. B. 2003. P. 6754–6759.113. RiwotzkiK.,HaaseM.ColloidalYVO4 :EuandYP0.95V0.05O4 :EuNanoparticles: Luminescence and Energy Transfer Processes // J. Phys. Chem. B. 2001. Vol.105. P. 12709–12713.114. Yu M., Lin J., Fang J.
Silica spheres coated with YVO4: Eu3+ layers via sol-gel process: Asimple method to obtain spherical core-shell phosphors // Chem. Mater. ACS Publications,2005. Vol. 17, № 7. P. 1783–1791.115. Yang E. et al. Kinetic Control over YVO4: Eu3+ Nanoparticles for Tailored Structure andLuminescence Properties // J. Phys. Chem. C. ACS Publications, 2014. Vol.
118, № 7. P. 3820–3827.116. Sharma P.K. et al. Seeding effect in hydrothermal synthesis of nanosize yttria // J. Mater. Sci.Lett. Springer, 1998. Vol. 17, № 10. P. 823–825.117. White W.B., Keramidas V.G. Vibrational spectra of oxides with the C-type rare earth oxidestructure // Spectrochim. Acta Part A Mol. Spectrosc. Elsevier, 1972. Vol. 28, № 3. P. 501–509.118. Zhang K.
et al. Enhanced luminescence and size effects of Y2O3:Eu3+ nanoparticles andceramics revealed by x rays and Raman scattering // JOSA B. Optical Society of America, 2004.Vol. 21, № 10. P. 1804–1808.119. Lancok J. et al. Influence of the PLD parameters on the crystalline phases and fluorescence ofEu: Y2O3 planar waveguides // Appl.
Phys. A. Springer, 2004. Vol. 79, № 4-6. P. 1263–1265.120. Kremenovic A. et al. A Y2O3: Yb nanoscale magnet obtained by HEBM: C3i/C2 siteoccupancies, size/strain analysis and crystal field levels of Yb3+ ions // Nanotechnology. IOPPublishing, 2007. Vol. 18, № 14. P. 145616.121. Dilawar N. et al. A Raman spectroscopic study of C-type rare earth sesquioxides // Mater.Charact. 2008. Vol.
59, № 4. P. 462–467.122. Martel J.F. et al. Crystal-field study of Sm 3+ ions in Sm 2 O 3, Sm 3+:Gd2O3 andSm3+:Y2O3 // J. Phys. Chem. Solids. Elsevier, 2000. Vol. 61, № 9. P. 1455–1463.123. Ratnam B. V et al. White Light Emission from NaCaPO4: Dy3+ Phosphor for Ultraviolet‐BasedWhite Light‐Emitting Diodes // J. Am. Ceram. Soc. Wiley Online Library, 2010. Vol. 93, № 11.P.
3857–3861.124. Lü Q. et al. Local thermal effect at luminescent spot on upconversion luminescence in Y2O3:Er3+, Yb 3+ nanoparticles // Mater. Sci. Eng. B. Elsevier, 2011. Vol. 176, № 14. P. 1041–1046.132125. Born M., Huang K. Dynamical Theory of Crystal Lattices. Clarendon press, oxford, 1954.126. Chang N.C., Gruber J.B. Spectra and Energy Levels of Eu3+ in Y2O3 // J. Chem.
Phys. AIPPublishing, 1964. Vol. 41, № 10. P. 3227–3234.127. Buijs M., Meyerink A., Blasse G. Energy transfer between Eu3+ ions in a lattice with twodifferent crystallographic sites: Y2O3:Eu3+, Gd2O3:Eu3+ and Eu2O3 // J. Lumin. Elsevier,1987. Vol. 37, № 1. P.
9–20.128. Hang C. et al. Photoluminescence properties and energy transfer in Y2O3: Eu3+ nanophosphors// Chinese Phys. B. IOP Publishing, 2014. Vol. 23, № 5. P. 57801.129. Qin X. et al. Flame synthesis of Y2O3:Eu nanophosphors using ethanol as precursor solvents //J. Mater. Res. 2005. Vol. 20, № 11. P. 2960–2968.130. Zhang W.-W. et al. Site-selective spectra and time-resolved spectra of nanocrystalline Y2O3:Eu// Chem. Phys. Lett. 2003. Vol. 376, № 3–4. P.
318–323.131. Fujii T. et al. Photochromic behavior in the fluorescence spectra of 9-anthrol encapsulated in SiAl glasses prepared by the sol-gel method // J. Phys. Chem. B. ACS Publications, 1997. Vol.101, № 50. P. 10631–10637.132. Murakami S. et al. Photoluminescence and decay profiles of undoped and Fe3+, Eu3+-dopedPLZT ceramics at low temperatures down to 10 K // Inorganica Chim. Acta. 2000. Vol.
300302. P. 1014–1021.133. Auzel F. Multiphonon processes, cross-relaxation and up-conversion in ion-activated solids,exemplified by minilaser materials // Radiationless processes. Springer, 1980. P. 213–286.134. Becker P.M., Olsson A.A., Simpson J.R. Erbium-doped fiber amplifiers: fundamentals andtechnology. Academic press, 1999.135.
Foster D.R. et al. Magnetic circularly polarized luminescence spectra of Eu (. beta.-diketonate)3X2 complexes in nonaqueous solution // Inorg. Chem. ACS Publications, 1983. Vol. 22, № 26.P. 4002–4009.136. Jia G. et al. Eu3+ spectroscopy: A structural probe for yttrium orthoborate phosphors // J. Phys.Chem. C. ACS Publications, 2010. Vol.
114, № 6. P. 2769–2775.137. Blasse G., Bril A. Fluorescence of Eu3+‐Activated Sodium Lanthanide Titanates (NaLn1–) // J.Chem. Phys. AIP Publishing, 1968. Vol. 48, № 8. P. 3652–3656.138. Wiglusz R.J. et al. Hydrothermal preparation and photoluminescent properties of MgAl2O4:Eu3+ spinel nanocrystals // J. Lumin. Elsevier, 2010. Vol. 130, № 3. P. 434–441.139. Resch-Genger U. et al. Quantum dots versus organic dyes as fluorescent labels // Nat. Methods.Nature Publishing Group, 2008.
Vol. 5, № 9. P. 763–775.140. Beer D., Weber J. Photobleaching of organic laser dyes // Opt. Commun. Elsevier, 1972. Vol. 5,№ 4. P. 307–309.133141. Kaminow I.P. et al. Photobleaching of organic laser dyes in solid matrices // Appl. Opt. OpticalSociety of America, 1972. Vol. 11, № 7. P. 1563–1567.142. Eggeling C. et al. Photobleaching of fluorescent dyes under conditions used for single-moleculedetection: Evidence of two-step photolysis // Anal. Chem. ACS Publications, 1998.
Vol. 70, №13. P. 2651–2659.143. Zrazhevskiy P., Sena M., Gao X. Designing multifunctional quantum dots for bioimaging,detection, and drug delivery // Chem. Soc. Rev. Royal Society of Chemistry, 2010. Vol. 39, №11. P. 4326–4354.144. Algar W.R., Tavares A.J., Krull U.J. Beyond labels: a review of the application of quantum dotsas integrated components of assays, bioprobes, and biosensors utilizing optical transduction //Anal. Chim.
Acta. Elsevier, 2010. Vol. 673, № 1. P. 1–25.145. Probst J.J. et al. Luminescent nanoparticles and their use for in vitro and in vivo diagnostics //Expert Rev. Mol. Diagn. Informa Healthcare London, 2012. Vol. 12. P. 49–64.146. Texier I. et al. Luminescent up-converting nanocrystals for in vivo imaging // BiomedicalOptics (BiOS) 2007.
International Society for Optics and Photonics, 2007. P. 64490D –64490D.147. Chen W. Nanoparticle fluorescence based technology for biological applications // J. Nanosci.Nanotechnol. American Scientific Publishers, 2008. Vol. 8, № 3. P. 1019–1051.148. Bouzigues C., Gacoin T., Alexandrou A. Biological applications of rare-earth basednanoparticles // ACS Nano. ACS Publications, 2011. Vol.
5, № 11. P. 8488–8505.149. Shen J., Sun L.-D., Yan C.-H. Luminescent rare earth nanomaterials for bioprobe applications //Dalt. Trans. Royal Society of Chemistry, 2008. Vol. 9226, № 42. P. 5687–5697.150. Hemmilä I., Laitala V. Progress in lanthanides as luminescent probes // J. Fluoresc. Springer,2005.