Диссертация (1149490), страница 17
Текст из файла (страница 17)
K. Shchekin, M. S. Kshevetskiy, and O. S. Pelevina. Micellization kineticswith allowance for fussion and fission of spherical and cylindrical micelles:1. set of nonlinear equations describing slow relaxation. Colloid journal,73(3):406–417, 2011.107[33] R. Nagarajan and E. Ruckenstein. Self-assembled system. In J. V. Sengers,R. F. Kayser, C. J.
Peters, and H. J. White, editors, Equations of state forfluids and fluid mixtures, volume V of Experimental Thermodynamics, page589. Elsevier, Amsterdam, 2000.[34] G. Porte, Y. Poggi, J. Appell, and G. Maret. Large micelles in concentratedsolutions. the second critical micellar concentration. The Journal ofPhysical Chemistry, 88(23):5713–5720, 1984.[35] S. May and A. Ben-Shaul. Molecular theory of the sphere-to-rod transitionand the second cmc in aqueous micellar solutions. The Journal of PhysicalChemistry B, 105(3):630–640, 2001.[36] M.
S. Kshevetskiy and A. K. Shchekin. The aggregation work and shapeof molecular aggregates upon the transition from spherical to globular andcylindrical micelles. Colloid Journal, 67(3):324–336, 2005.[37] F. M. Kuni, A. K. Shchekin, A. I. Rusanov, and A. P. Grinin.Concentrations of monomers and cylindrical micelles above the second cmc.Colloid Journal, 66(2):174–185, 2004.[38] F. M.
Kuni, A. K. Shchekin, A. I. Rusanov, and A. P. Grinin. Systemof relaxation equations for materially isolated surfactant solution withspherical and cylindrical micelles. Colloid Journal, 67(1):32–40, 2005.[39] F. M. Kuni, A. K. Shchekin, A. P. Grinin, and A. I. Rusanov. Kineticdescription of the relaxation of surfactant solutions containing sphericaland cylindrical micelles. Colloid Journal, 67(1):41–50, 2005.[40] F.
M. Kuni, A. K. Shchekin, A. I. Rusanov, and A. P. Grinin. Kineticdescription of the relaxation of surfactant solutions in the absence ofactivation barrier between spherical and cylindrical micelles. ColloidJournal, 67(2):146–158, 2005.[41] F. M. Kuni, A. K. Shchekin, A. I. Rusanov, and A.
P. Grinin. Boltzmanndistributions and slow relaxation in systems with spherical and cylindricalmicelles. Langmuir, 22(4):1534–1543, 2006.[42] A. K. Shchekin, F. M. Kuni, A. P. Grinin, and A. I. Rusanov. Kinetics offast relaxation of cylindrical micelles. Colloid Journal, 68(2):248–252, 2006.[43] A. K. Shchekin, F. M. Kuni, A.
P. Grinin, and A. I. Rusanov. A kineticdescription of the fast relaxation of coexisting spherical and cylindricalmicelles. Russian Journal of Physical Chemistry A, 82(1):101–107, 2008.108[44] A. K. Shchekin, A. I. Rusanov, and F. M. Kuni. Kinetic theory of molecularmechanism of micellar relaxation. Chemistry Letters, 41(10):1081–1083,2012.[45] А. К. Щекин, Ф. М. Куни, А. П.
Гринин, and А. И. Русанов. Кинетическое описание быстрой релаксации сосуществующих сферическихи цилиндрических мицелл. Журнал физической химии, 82(1):112–119,2008.[46] A. I. Rusanov, F. M. Kuni, A. P. Grinin, and A. K. Shchekin.Thermodynamic characteristics of micellization in the droplet model ofsurfactant spherical molecular aggregate. Colloid Journal, 64(5):605–615,2002.[47] E. A.
G. Aniansson, S. N. Wall, M.W. Ulbricht, R. Zana, J. Lang, andmicellar equilibria and quantitativestudies of micellar solutions of ionicChemistry, 80(9):905–922, 1976.Almgren, H. Hoffmann, I. Kielmann,C. Tondre. Theory of the kinetics ofinterpretation of chemical relaxationsurfactants. The Journal of Physical[48] M. von Smoluchowski.Versuch einer mathematischen theorie derkoagulationskinetik kolloider lösungen. Z. phys. Chem, 92(9):129–168, 1917.[49] I.
A. Babintsev, L. Ts. Adzhemyan, and A. K. Shchekin. Micellizationand relaxation in solution with spherical micelles via the discrete becker–döring equations at different total surfactant concentrations. The Journalof Chemical Physics, 137:044902, 2012.[50] A. I. Rusanov, A. P. Grinin, F. M.
Kuni, and A. K. Shchekin.Nanostructural models of micelles and primicellar aggregates. Russianjournal of general chemistry, 72(4):607–621, 2002.[51] G. Porte, Y. Poggi, J. Appell, and G. Maret. Large micelles in concentratedsolutions. the second critical micellar concentration. The Journal ofPhysical Chemistry, 88(23):5713–5720, 1984.[52] S. May and A. Ben-Shaul. Molecular theory of the sphere-to-rod transitionand the second cmc in aqueous micellar solutions.
The Journal of PhysicalChemistry B, 105(3):630–640, 2001.[53] Ch. Tanford. The Hydrophobic Effect: Formation of Micelles and BiologicalMembranes 2d Ed. J. Wiley., 1980.[54] R. Nagarajan. Theory of micelle formation: Quantitative approach topredicting micellar properties from surfactant molecular structure. In109K. Esumi and M. Ueno, editors, Structure-Performance Relationships inSurfactants, volume 112 of Surfactant Science, page 1. Marcel Dekker, NewYork, 2003.[55] I. A.
Babintsev, L. Ts. Adzhemyan, and A. K. Shchekin. Kineticsof micellisation and relaxation of cylindrical micelles described by thedifference becker-döring equation. Soft Matter, 2013.[56] E. A. G. Aniansson and S. N. Wall. Kinetics of step-wise micelleassociation. correction and improvement.The Journal of PhysicalChemistry, 79(8):857–858, 1975.[57] I.
A. Babintsev, L. Ts. Adzhemyan, and A. K. Shchekin. Multi-scale timesand modes of fast and slow relaxation in solutions with coexisting sphericaland cylindrical micelles according to the difference becker–döring kineticequations. The Journal of Chemical Physics, 141:064901, 2014.[58] F.M. Kuni, A.K. Shchekin, A.I. Rusanov, and A.P. Grinin. Relations forextrema of the work of aggregation in micellar solutions. Colloid Journal,69(3):319–327, 2007.[59] D. G.
Hall. A phenomenological approach to micellisation kinetics. Journalof the Chemical Society, Faraday Transactions 1: Physical Chemistry inCondensed Phases, 83(4):967–983, 1987.110.