Диссертация (1149334), страница 10
Текст из файла (страница 10)
6. — Pp. 959–975.59. Optical clock recovery method: review / T. V. Lerber, S. Honkanen, A. Tervonen et al. // Elsevier Opt. Fiber Technol. — 2009. — Vol. 15. — Pp. 363–372.60. Tokunaga M., Mori S. Digital neuron model with DPLL for associative memory // IEEE International Symposium on Circuits and Systems (ISCAS 1990) /IEEE. — 1990. — Pp. 1069–1072.61. Wei-Ping L., Chin-Kan C. Phase-locked loop with neurocontroller // Proceedings of the 37th SICE Annual Conference, International Session Papers. —1998. — Pp.
1133–1138.62. Hoppensteadt F. C., Izhikevich E. M. Pattern recognition via synchronizationin phase-locked loop neural networks // IEEE Transactions on Neural Net-works. — 2000. — Vol. 11, no. 3. — Pp. 734–738.63. Ahissar E. Neuronal phase-locked loops. — 2003. — US Patent 6,581,046.64. Propagating interfaces in a two-layer bistable neural network / V. B.
Kazantsev, V. I. Nekorkin, S. Morfu et al. // International Journal of Bifurcation andChaos. — 2006. — Vol. 16, no. 03. — Pp. 589–600.65. Aaltonen L., Saukoski M., Halonen K. Design of clock generating fully integrated PLL using low frequency reference signal // Proceedings of the 200583European Conference on Circuit Theory and Design. — Vol. 1. — 2005. —Pp.
I/161–I/164.66. Banerjee D. PLL performance, simulation and design. — Dog Ear Publishing,2006.67. Rapinoja T., Stadius K., Halonen K. Behavioral Model based SimulationMethods for Charge-Pump PLL’s // 2006 International Baltic Electronics Conference. — 2006.
— Pp. 1–4.68. Kudrewicz J., Wasowicz S. Equations of phase-locked loop. Dynamics on circle,torus and cylinder. — World Scientific, 2007.69. Proakis J. G., Salehi M. Digital Communications. — McGraw-Hill HigherEducation, 2008.70. Goldman S. J. Phase-Locked Loops Engineering Handbook for Integrated Circuits. — Artech House, 2007.71. Speeti T., Aaltonen L., Halonen K. Integrated charge-pump phase-locked loopwith SC-loop filter for capacitive microsensor readout // IEEE InternationalSymposium on Circuits and Systems (ISCAS 2009). — 2009.
— Pp. 1373–1376.72. Shakhtarin B. I. The dynamic characteristics of phase locking in the presence ofa harmonic noise // Journal of Communications Technology and Electronics.— 2012. — Vol. 57, no. 6. — Pp. 588–594.73. Шалфеев В. Д., Матросов В. В. Нелинейная динамика систем фазовойсинхронизации. — Изд.-во Нижегородского университета, 2013.74. Costas circuit under the action of additive harmonic interferences and wideband noise / Yu. A. Sidorkina, V. V. Sizykh, B. I.
Shakhtarin, V. A. Shevtsev //Journal of Communications Technology and Electronics. — 2016. — Vol. 61,no. 7. — Pp. 807–816.75. Abramovitch D. Phase-Locked Loops: A control Centric Tutorial // AmericanControl Conf. Proc. — Vol. 1. — IEEE, 2002. — Pp. 1–15.8476. Hold-In, Pull-In, and Lock-In Ranges of PLL Circuits: Rigorous Mathematical Definitions and Limitations of Classical theory / G. A. Leonov,N. V. Kuznetsov, Yuldashev M.
V., Yuldashev R. V. // IEEE Transactionson Circuits and Systems I: Regular Papers. — 2015. — Vol. 62, no. 10. —Pp. 2454–2464.77. Mitropolsky Y. A., Bogolubov N. N. Asymptotic Methods in the Theory ofNon-Linear Oscillations. — New York: Gordon and Breach, 1961.78. Samoilenko A. M., Petryshyn R. Multifrequency Oscillations of Nonlinear Systems.
Mathematics and Its Applications. — Springer, 2004.79. Kuznetsov N. V., Leonov G. A., Seledzhi S. M. Nonlinear analysis of the Costasloop and phase-locked loop with squarer // Proceedings of the IASTED International Conference on Signal and Image Processing, SIP 2009. — 2009.
—Pp. 1–7.80. Analytical methods for computation of phase-detector characteristics and PLLdesign / N. V. Kuznetsov, G. A. Leonov, M. V. Yuldashev, R. V. Yuldashev //ISSCS 2011 - International Symposium on Signals, Circuits and Systems, Proceedings. — 2011. — Pp. 7–10.81. Simulation of phase-locked loops in phase-frequency domain / N. V. Kuznetsov,G. A. Leonov, P. Neittaanmäki et al. // International Congress on Ultra Modern Telecommunications and Control Systems and Workshops. — IEEE, 2012.— Pp.
351–356 (art. no. 6459692).82. Nonlinear mathematical models of Costas Loop for general waveform of inputsignal / N. V. Kuznetsov, G. A. Leonov, P. Neittaanmäki et al. // IEEE 4thInternational Conference on Nonlinear Science and Complexity, NSC 2012 Proceedings. — 2012. — Pp. 109–112.83. Phase-frequency domain model of Costas loop with mixer discriminator /N. V. Kuznetsov, G. A. Leonov, P.
Neittaanmäki et al. // Proceedings ofthe 10th International Conference on Informatics in Control, Automation andRobotics. — 2013. — Pp. 427–433.8584. Kuznetsov N. V. Stability and Oscillations of Dynamical Systems: Theory andApplications. — Jyvaskyla University Printing House, 2008.85. Nonlinear Models of BPSK Costas Loop / E. V. Kudryashova, O. A. Kuznetsova, N. V. Kuznetsov et al. // ICINCO 2014 - Proceedings of the 11th Inter-national Conference on Informatics in Control, Automation and Robotics.
—2014. — Vol. 1. — Pp. 704–710.86. A short survey on nonlinear models of the classic Costas loop: rigorous derivation and limitations of the classic analysis / R. E. Best, N. V. Kuznetsov,O. A. Kuznetsova et al. // Proceedings of the American Control Conference.— IEEE, 2015. — Pp. 1296–1302.87. Mathematical models of the Costas loop / G. A.
Leonov, N. V. Kuznetsov,M. V. Yuldashev, R. V. Yuldashev // Doklady Mathematics. — 2015. — Vol. 92,no. 2. — Pp. 594–598.88. Nonlinear dynamical model of Costas loop and an approach to the analysis ofits stability in the large / G. A. Leonov, N. V. Kuznetsov, M. V. Yuldashev,R. V. Yuldashev // Signal processing. — 2015.
— Vol. 108. — Pp. 124–135.89. Limitations of the classical phase-locked loop analysis / N. V. Kuznetsov,O. A. Kuznetsova, G. A. Leonov et al. // Proceedings - IEEE InternationalSymposium on Circuits and Systems. — 2015. — Vol. 2015-July. — Pp. 533–536.90. Шахгильдян В. В., Ляховкин А. А. Фазовая автоподстройка частоты. —Москва: Связь, 1966.91. Viterbi A. Principles of coherent communications. — New York: McGraw-Hill,1966.92.
Computation of phase detector characteristics in synchronization systems /G. A. Leonov, N. V. Kuznetsov, M. V. Yuldahsev, R. V. Yuldashev // DokladyMathematics. — 2011. — Vol. 84, no. 1. — Pp. 586–590.93. Computation of the phase detector characteristic of classical PLL /G. A.
Leonov, N. V. Kuznetsov, M. V. Yuldashev, R. V. Yuldashev // DokladyMathematics. — 2015. — Vol. 91, no. 2. — Pp. 246–249.8694. Discontinuity and Complexity in Nonlinear Physical Systems / R. E. Best,N. V. Kuznetsov, G. A. Leonov et al. — Springer, 2014. — Vol. 6.95. Rigorous mathematical definitions of the hold-in and pull-in ranges for phaselocked loops / N. V. Kuznetsov, G.
A. Leonov, M. V. Yuldashev, R. V. Yuldashev // IFAC-PapersOnLine. — 2015. — Vol. 48, no. 11. — Pp. 710–713.96. Hold-in, pull-in, and lock-in ranges of PLL circuits: rigorous mathematicaldefinitions and limitations of classical theory / G. A. Leonov, N. V. Kuznetsov,M. V. Yuldashev, R. V. Yuldashev // IEEE Transactions on Circuits andSystems–I: Regular Papers. — 2015. — Vol. 62, no. 10.
— Pp. 2454–2464.97. Routh E. J. A treatise on the stability of a given state of motion: particularlysteady motion. — Macmillan and Company, 1877.98. Hurwitz A. Ueber die Bedingungen, unter welchen eine Gleichung nur Wurzelnmit negativen reellen Theilen besitzt // Mathematische Annalen. — 1895. —Vol. 46, no. 2.
— Pp. 273–284.99. Gopal M. Control systems: principles and design. — Tata McGraw-Hill Education, 2002.100. Gantmacher F. R., Brenner J. L. Applications of the Theory of Matrices. —Courier Corporation, 2005.101. Kapranov M. V. The lock-in band in phase-lock automatic frequency control //Radiotekhnika. — 1956. — Vol. 11, no.
12. — Pp. 37–52.102. Шахгильдян В. В. Полоса захвата в системе фазовой автоподстройкичастоты с RLC фильтром // Электросвязь. — 1961. — no. 9.103. Gubar’ N. A. Investigation of a piecewise linear dynamical system with threeparameters // J. Appl. Math. Mech. — 1961. — Vol. 25, no.
















