Диссертация (1145362), страница 28
Текст из файла (страница 28)
New York : Plenum. 1985. P. 109-117.[33]. Dore P., Moraldi M., Pool J.D., Birnbaum G. Analysis of roto-translationalabsorption spectra induced in low density gases of non polar molecules // Mol.Phys. 1989. V. 66. № 2. P. 355-373.[34]. Menoux V., Le Doucen R., Boulet C., Roblin A., Bouchardy A.M. Collisioninduced absorption in the fundamental band of N2: temperature dependence of theabsorption for N2-N2 and N2-O2 pairs // Appl.
Opt. 1993. V. 32. P. 263-268.[35]. Orlando J.J., Tyndall G.S., Nickerson K.E., Calvert J.G. The temperaturedependence of collision-induced absorption by oxygen near 6 μm // J. Geophys.Res. 1991. V. 96. P. 20755-20760.[36]. Mate B., Lugez C.L., Solodov A.M., Fraser G.T., Lafferty W.J. Collisioninduced absorption by O2 near 6.4 μm in pure O2 and O2/N2 mixtures // J.Geophys. Res. 2000. V. 105. P. 22225-22230.[37]. Boissoles J., Boulet C., Tipping R.H., Brown A., Ma Q. Theoreticalcalculation of the translation-rotation collision-induced absorption in N2–N2, O2–O2, and N2–O2 pairs // J. Quant.
Spectrosc. Radiat. Transfer. 2003. V. 82. P. 505516.[38]. Long C.A. and Ewing G.E. The infrared spectrum of bound state oxygendimers // Chem. Phys. Lett. 1971. V. 9. P. 225-229.[39]. Long C.A. and Ewing G.E. Spectroscopic investigation of Van der Waalsmolecules. 1. The infrared and visible spectra of (O2)2 // J. Chem.
Phys. 1973. V.58. P. 4824-4834.190[40]. Long C.A., Henderson G., Ewing G.E. The infrared spectrum of the (N2)2Van der Waals molecule // Chem. Phys. 1973. V. 2. P. 485-489.[41]. Moreau G., Boissoles J., Le Doucen R., Boulet C., Tipping R.H., Ma Q.Metastable dimer contributions to the collision-induced fundamental absorptionspectra of N2 and O2 pairs // J. Quant. Spectrosc. Radiat. Transfer. 2001. V.
70. №1. P. 99-113.[42]. Vigasin A.A. Collision-induced absorption in the region of the O2fundamental: bandshapes and dimeric features // J. Mol. Spectrosc. 2000. V. 202.№ 1. P. 59-66.[43]. Mannik L., McKellar A.R.W., Rich N., Stryland J.C. Anomalous densitydependence of the v1 band of carbon dioxide in pressure-induced absorption //Can. J. Phys. 1970. V. 48. № 1. P. 95-98.[44].
Burch D.E. and Gryvnak D.A. Absorption of infrared radiant energy by CO2and H2O. V. Absorption by CO2 between 1100 and 1835 cm-1 (9.1-5.5 µm) // J.Opt. Soc. Am. 1971. V. 61. P. 499-503.[45]. Mannik L., Stryland J.C. and Welsh H.L. An infrared spectrum of CO2dimers in the "locked" configuration // Can. J. Phys. 1971.
V. 49. № 23. P. 30563057.[46]. Mannik L., Stryland J.C. The ν1 band of carbon dioxide in pressure-inducedabsorption. II. Density and temperature dependence of the intensity; CriticalPhenomena // Can. J. Phys. 1972. V. 50. № 12.
P. 1355-1362.[47]. Адикс Т.Г. Экспериментальное исследование ИК-спектра поглощенияСО2 применительно к окнам прозрачности атмосферы "Венера" : дисс. канд.физ.-мат. наук / Институт физики атмосферы АН СССР. Москва, 1984. 245 с.[48]. Thomas M.E., Linevsky M.J. Integrated intensities of N2, CO2, and SF6vibrational bands from 1800 to 5000 cm-1 as a function of density and temperature// J.
Quant. Spectrosc. Radiat. Transfer. 1989. V. 42. P. 465-476.[49]. Lamouroux J., Tran H., Laraia A.L., Gamache R.R., Rothman L.S., GordonI.E., Hartmann J.-M. Updated database plus software for line-mixing in CO2191infrared spectra and their test using laboratory spectra in the 1.5–2.3 mm region //J. Quant. Spectrosc.
Radiat. Transfer. 2010. V. 111. P. 2321-2331.[50]. Winters B.H., Silverman S. and Benedict W.S. Line shape in the wingbeyond the band head of the 4.3 μm band of CO2 // J. Quant. Spectrosc. Radiat.Transfer. 1964. V. 4. P. 527-537.[51]. Burch D.E., Gryvnak D.A., Patty R.R., Bartky C.E. Absorption of infraredradiant energy by CO2 and H2O. IV. Shapes of collision-broadened CO2 lines // J.Opt.
Soc. Am. 1969. V. 59. № 3. P. 267-280.[52]. Rinsland C.P., Smith M.A.H., Russel J.M. III, Park J.H. and Farmer C.B.Stratospheric masurements of continuous absorption near 2400 cm-1 // Appl. Opt.1981. V. 20. P. 4167-4171.[53]. Le Doucen R., Cousin C., Boulet C. and Henry A. Temperature dependenceof the absorption in the region beyond the 4.3 μm band head of CO2. 1: Pure CO2case // Appl. Opt. 1985. V. 24.
№ 6. P. 897-906.[54]. Cousin C., Le Doucen R., Boulet C. and Henry A. Temperature dependenceof the absorption in the region beyond the 4.3 μm band head of CO2. 2: N2 and O2broadening // Appl. Opt. 1985. V. 24. № 22. P. 3899-3907.[55]. Баранов Ю.И., Буланин М.О., Тонков М.В. Исследование крыльевлиний колебательно-вращательной полосы 3ν3 СО2 // Опт.
и спектр. 1981. Т.50. № 3. C. 613-615.[56]. Баранов Ю.И., Власова О.Б., Докучаев А.B., Тонков М.В. Форма полосИК-поглощения газообразной окиси углерода // Опт. и спектр. 1981. Т. 50. №6. С. 1031-1033.[57]. Саттаров Х., Тонков М.В. Исследование ИК-поглощения в крылеколебательно-вращательной полосы ν3 СО2 // Опт.
и спектр. 1983. Т. 54. № 6.С. 944-946.[58]. Баранов Ю.И., Тонков М.В. Форма крыльев ИК-полос окиси и двуокисиуглерода // Опт. и спектр. 1984. Т. 57. № 2. С. 242-247.192[59]. Bulanin М.О., Dokuchaev A.B., Tonkov M.V. and Filippov N.N. Influenceof line interference on the vibration-rotation band shapes // J. Quant.
Spectrosc.Radiat. Transfer. 1984. V. 31. № 6. P. 521-543.[60]. Телегин Г.В., Фомин В.В. Расчет коэффициента поглощения в спектреСО2. Периферия полос 4.3, 2.7 и 1.4 мкм // Опт. и спектр. 1980. Т. 49. № 4. С.668-675.[61]. Телегин Г.В., Фирсов К.М., Фомин В.В. Расчет коэффициентапоглощения в спектре СО2. Микроокна полосы 4.3 мкм // Опт.
и спектр.1980. Т. 49. № 6. С. 1159-1163.[62]. Nesmelova L.I., Rodimova O.B., Tvorogov S.D. Spectral behavior of theabsorption coefficients in the 4.3 μm CO2 band within a wide range of temperatureand pressure // Atmos. Ocean. Opt. 1992. V. 5. P. 609-614.[63]. Niro F., Jucks K., Hartmann J.-M. Spectra calculations in central and wingregions of CO2 IR bands.
IV: Software and database for the computation ofatmospheric spectra // J. Quant. Spectrosc. Radiat. Transf. 2005. V. 95. P. 469481.[64]. Shine K.P., Ptashnik I.V., Radel G. The Water Vapour Continuum: BriefHistory and Recent Developments // Surv. Geophys. 2012.
V. 33. P. 535-555.[65]. Elsasser W.M. Note on Atmospheric Absorption Caused by the RotationalWater Band // Phys. Rev. 1938. V. 53. P. 768-768.[66]. Elsasser W.M. Heat transfer by Infrared radiation in the Atmosphere.Cambridge, MA : Harvard University Press. 1942. 107 p.[67]. Зуев В.Е. Дистанционное зондирование атмосферы. Новосибирск :Наука, 1978.
175 с. // Зуев В.Е., Самохвалов И.В., Соснин А.В., ХмельницкийГ.С. Исследование ослабления излучения перестраиваемого СО2 лазера нагоризонтальных трассах приземного слоя атмосферы. С. 125-136.[68]. Haught K.M., Cordray D.M. Long-path high-resolution atmospherictransmission measurements: comparison with LOWTRAN 3B predictions // Appl.Optics. 1978. V. 17. P. 2668-2670.193[69]. Cutten R.D. Atmospheric broadband transmission measurements andprediction in the 8-l3 μm window: influence of water continuum absorption errors// Appl. Optics. 1985. V.
24. P. 1085-1087.[70]. Aref'ev V.N. Measurements of Atmospheric Transmittance of CO2 LaserRadiation, Proc. SPIE. 1990. V. 1397. Eighth International Symposium on GasFlow and Chemical Lasers. P. 827-830.[71]. Devir A.D., Brandman N., Barzilai B. and Ben-Shalom A. Ground-to-spaceatmospheric transmittance measurements in the 3-5 μm and 8-12 μm spectralregions: Comparison with LOWTRAN 7, Proc. SPIE. 1992.
V. 197. P. 35-49.[72]. Weiss-Wrana K., Kohne A., Höhn D.H. Atmospheric TransmittanceMeasurements of CO2 and near-IR Laser Radiation over 8.6 km, Proc. SPIE. 1992.V. 1688 Atmospheric Propagation and Remote Sensing. P. 670.[73]. Coffey M.T. Water vapor absorption in the 10-12 μm atmospheric window //Quart. J.
R. Met. Soc. 1977. V. 103. P. 685-692.[74]. Barton I.J. Water vapor absorption in the 3.5-4.2 μm atmospheric window //Quart. J. R. Met. Soc. 1981. V. 107. P. 967-972.[75]. Hook S.J., Vaughan R.G., Tonooka H. and Schladow S.G. Absoluteradiometric in-flight validation of mid infrared and thermal infrared data fromASTER and MODIS on the terra spacecraft using the lake Tahoe, CA/NV, USA.Automated Validation Site // IEEE Trans.
Geosci. Remote Sens. 2007. V. 45. № 6.P. 1798-1807.[76]. White J.U. Long optical paths of large aperture // J. Opt. Soc. Am. 1942. V.32. P. 285-288.[77]. Чернин С.М., Барская Е.Г. Оптическая многоходовая система.Авторское свидетельство СССР № 1040454.[78]. Burch D.E., Gryvnak D.A., Patty R.R. Absorption of infrared radiation byCO2 and H2O.
Experimental techniques // J. Opt. Soc. Am. 1967. V. 57. P. 885895.194[79]. Арефьев В.Н., Волковицкий О.А., Гончаров Н.В., Дианов-Клоков В.И.Оптическаямногоходоваякюветадляисследованияпоглощенияискусственными атмосферами // ПТЭ. 1974. № 1. C. 198–201.[80]. Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R., WilliamsR.G. Laboratory measurements of the water vapor continuum in the 1200 cm-1 8000 cm-1 region between 293K and 351K // J.