Диссертация (1145362), страница 30
Текст из файла (страница 30)
Spectrosc. Radiat. Transfer. 2011. V. 112. P. 1304-1313.[138]. Vigasin A.A., Baranov Yu.I., Chlenova G.V. Temperature variations of theinteraction induced absorption of CO2 in the ν1, 2ν2 region: FTIR measurementsand dimer contribution // J. Mol. Spectrosc. 2002. V. 213. P. 51-56.[139]. Baranov Yu.I., Lafferty W.J., Fraser G.T. Infrared spectrum of thecontinuum and dimer absorption in the vicinity of the O2 vibrational fundamentalin O2/CO2 mixtures // J.
Mol. Spectrosc. 2004. V. 228. P. 432-440.200[140]. Shapiro M.M., Gush H.P. The collision-induced fundamental and firstovertone bands of oxygen and nitrogen // Can. J. Phys. 1966. V. 44. P. 949-963.[141]. Thibault F., Menoux V., Le Doucen R., Rosenmann L., Hartmann J.-M.,Boulet C. Infrared collision-induced absorption by O2 near 6.4 μm for atmosphericapplications: measurements and empirical modeling // Appl.
Opt. 1997. V. 36. P.562-567.[142]. Vigasin A.A. On the temperature variations of the integrated absorptionintensity in the oxygen fundamental // J. Mol. Spectrosc. 2004. V. 224. P. 185-187.[143]. Reddy S.P., Cho C.W. Induced infrared absorption of nitrogen andnitrogen-foreign gas mixtures // Can. J.
Phys. 1965. V. 43. P. 2331-2342.[144]. Shapiro M.M., Gush H.P. The collision-induced fundamental and firstovertone bands of oxygen and nitrogen // Can. J. Phys. 1966. V. 44. P. 949-963.[145]. Sheng D.T., Ewing G.E. Collision induced infrared absorption of gaseousnitrogen at low temperatures // J.
Chem. Phys. 1971. V. 55. P. 5425-5430.[146]. Lokshtanov S.E., Bussery-Honvault B., Vigasin A.A. Extensive ab initiostudy of the integrated IR intensity in the N2 fundamental collision-induced band //Mol. Phys. 2008. V. 106. P. 1227-1231.[147]. Rothman L.S., Hawkins R.L., Wattson R.B. and Gamache R.R. Energyleveles, intensities, and line widths of atmospheric carbon dioxide bands // J.Quant.
Spectrosc. Radiat. Transfer. 1992. V. 48. P. 537-566.[148].БуланинМ.О., ГранскийП.В.Наблюдение индуцированногостолкновениями спектра поглощения в системе СО2-Хе в области Фермидиады ν1, 2ν2 // Опт. и спектр. 1984. Т. 57. № 5. С. 771-773.[149]. Varanasi P., Chou S. and Penner S.S. Absorption coefficients for watervapor in the 600 – 1000 cm-1 region // J.
Quant. Spectrosc. Radiat. Transfer. 1968.V. 8. P. 1537-1541.[150]. Baranov Yu.I., Lafferty W.J., Fraser G.T. The water-vapor continuum andselective absorption in the 8 μm to 12 μm and 4 to 5 μm windows at temperaturesfrom 311 K to 363 K / 62nd International Symposium on Molecular Spectroscopy.201June 18–22, 2007. OSU, Columbus, USA. <http://molspect.chemistry.ohiostate.edu/symposium_62/symposium/Program/MG.html#MG10>[151].
Baranov Yu.I., Lafferty W.J. The water-vapor continuum and selectiveabsorption in the 4 μm to 5 μm spectral region at temperatures from 311 K to 363K / 20th International Conference on High Resolution Molecular Spectroscopy.September 2–6, 2008. Prague, Czech Republic.[152]. Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R., WilliamsR.G. Laboratory measurements of the water vapor continuum in the 1200 cm-1 –8000 cm-1 region between 293 K and 351 K // J.
Geophys. Res. 2009. V. 114.D21301.[153]. Lee M-S, Baletto F, Kanhere D.G, Scandolo S. (2008) Far-infraredabsorption of water clusters by first-principles molecular dynamics // J. Chem.Phys. 2008. V. 128. P. 214506[154]. Eng R.S., Mantz A.W. Tunable diode laser measurements of water vaporcontinuum and water vapor absorption line shape in the 10 mm atmospherictransmission window region. In Atmospheric water vapor / Deepak A., WilkersonT.D., Ruhnke L.H.
eds. New York : Academic Press, 1980. P. 101–111.[155]. Baranov Yu.I., Lafferty W.J. The water-vapor continuum absorption in themid-infrared windows at temperatures from 311 K to 363 K / 64th InternationalSymposium on Molecular Spectroscopy. June 22–26, 2009. OSU, Columbus,USA.<http://molspect.chemistry.ohiostate.edu/symposium_64/symposium/Abstracts/p086.pdf>[156] Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M. Pure water vaporcontinuum measurements between 3100 and 4400cm-1: evidence for water dimerabsorption in near atmospheric conditions // Geophys.
Res. Lett. 2007. V. 34.L12808.[157]. Schofield D.P., Kjaergaard H.G. Calculated OH-stretching and HOHbending vibrational transitions in the water dimer // Phys. Chem. Chem. Phys.2003. V. 5. P. 3100–3105.202[158]. Cutten D.R. Extension of water vapor continuum absorption to the 4.5–5.0mm region // Infrared Phys. 1979. V. 19. P. 663-667.[159]. Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. Watervapour continuum absorption in near-infrared windows derived from laboratorymeasurements // J. Geophys.
Res. 2011. V. 116. D16305.[160]. I.V. Ptashnik, T.M.Petrova, Yu.N.Ponomarev, K.P.Shine, A.A.Solodov,A.M.Solodov. Near-infrared water vapour self-continuum at close to roomtemperature // Journal of Quantitative Spectroscopy & Radiative Transfer 120(2013) 23–35.[161]. Burch D.E., Gryvnak D.A., Pembrock J.D. Investigation of the absorptionof infrared radiation by atmospheric gases: water, nitrogen, nitrous oxide //AFCRL-71-0124 Semi-Annual Technical Report № 2.
1971.[162]. Q. Ma. Персональное сообщение.[163]. Baranov Yu.I. The continuum absorption in H2O+N2 mixtures in the 2000 3250 cm-1 spectral region at temperatures from 326 to 363 K // J. Quant.Spectrosc. Radiat. Transfer. 2011. V. 112. P. 2281-2286.[164]. Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. Watervapour foreign-continuum absorption in near-infrared windows from laboratorymeasurements // Phil. Trans. R.
Soc. A. 2012. V. 370. P. 2557-2577.(doi:10.1098/rsta.2011.0218).[165]. Baranov Yu.I., Buryak I.A., Lokshtanov S.E., Lukyanchenko V.A. andVigasin A.A. H2O−N2 collision-induced absorption band intensity in the region ofthe N2 fundamental: ab initio investigation of its temperature dependence andcomparison with laboratory data // Phil. Trans.
R. Soc. A. 2012. V. 370. P. 26912709. (doi:10.1098/rsta.2011.0189).[166]. Bauer A. and Godon M. Continuum for H2O-X mixtures in the H2O spectralwindow at 239 GHz; X = C2H4, C2H6. Are collision induced absorption processesinvolved? // J. Quant. Spectrosc. Radiat. Transfer. 2001. V. 69. P. 277-290.203[167]. Ho W., Birnbaum G., Rosenberg A. Far-infrared collision-inducedabsorption in CO2.
I. Temperature dependence // J. Chem. Phys. 1971. V. 55. P.1028-1038.[168]. Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M. Pure water vaporcontinuum measurements between 3100 and 4400cm-1: evidence for water dimerabsorption in near atmospheric conditions // Geophys. Res. Lett. 2007. V. 34.L12808.[169]. Крупнов А. Ф., Третьяков М.
Ю. К вопросу о возможностинаблюдения линий миллиметрового спектра димера воды в равновеснойгазовой фазе // Оптика атмосферы и океана. 2009. Т. 22. №2. С. 107-111.[170]. Tretyakov M. Yu., Serov E. A., Koshelev M. A., Parshin V. V. andKrupnov A. F. Water Dimer Rotationally Resolved Millimeter-Wave SpectrumObservation at Room Temperature // Phys. Rev. Let. 2013. V. 110. 093001..