Диссертация (1145362), страница 29
Текст из файла (страница 29)
Geophys. Res. 2009. V. 114.D21301.[81]. Chudamani S. and Varanasi P. Self- and N2-broadened spectra of water vaporbetween 7.5 and 15.5 μm // J. Quant. Spectrosc. Radiat. Transfer. 1988. V. 38. P.407-412.[82]. McCoy J.H., Rensch D.B., Long R.K. Water vapor continuum absorption ofcarbon dioxide laser radiation near 10 μm // Appl. Opt. 1969. V. 8.
P. 1471-1477.[83]. Montgomery G.P. Jr. Temperature dependence of infrared absorption by thewater vapor continuum near 1200 cm-1 // Appl. Opt. 1978. V. 17. P. 2299-2303.[84]. Арефьев В.Н., Баранов Ю.И., Баранова Е.Л. Поглощение водянымпаром излучения в области 5.2-5.6 мкм // Известия АН СССР. Сер. ФАО.1991.
Т. 27. № 12. С. 1333-1341.[85]. Ponomarev Yu.N. Photo-acoustic investigation of the interaction of laserradiation with molecules and inter-molecular interactions in gases // Infrared Phys.1991. V. 32. P. 377-384.[86]. Peterson J.C., Thomas M.E., Nordstrom R.J., Damon E.K., Long R.K. Watervapor-nitrogen absorption at CO2 laser frequencies // Appl. Opt. 1979. V. 18.
P.834-841.[87].HinderlingJ.,SigristM.W.,KneubuhlF.K.Laser-photoacousticspectroscopy of water-vapor continuum and line absorption in the 8 to 14 μmatmospheric window // Infrared Phys. 1987. V. 27. P. 63-120.[88]. Tikhomirov A.B., Ptashnik I.V., Tikhomirov B.A. Measurement of thecontinuum absorption coefficient of water vapor near 14400 cm-1 (0.694μm) //Opt. and Spectrosc. 2006. V. 101. №1. P. 80–90195[89].
Cormier J.G., Ciurylo R. and Drummond J.R. Cavity ringdown spectroscopymeasurements of the infrared water vapor continuum // J. Chem. Phys. 2002. V.116. № 3. 2002. P. 1030-1034.[90]. Cormier J.G., Hodges J.T., Drummond J.R. Infrared water vapor continuumabsorption at atmospheric temperatures // J. Chem. Phys. 2005. V.
122. 114309.[91]. Bignell K.J. The water-vapor infra-red continuum // Quart. J. R. Met. Soc.1970. V. 96. P. 390-403.[92]. Shumate M.S., Menzies R.T., Margolis J.S. and Rosengren L.-G. Watervapor absorption of carbon dioxide laser radiation // Appl. Opt. 1976. V. 15. № 10.P. 2480-2488.[93]. Nordstrom R.J., Thomas M.E., Peterson J.C., Damon E.K., Long R.K.Effects of oxygen addition on pressure-broadened water vapor absorption in the10-mm region // Appl.
Opt. 1978. V. 7. P. 2724-2729.[94]. Loper G.L., O’Neill M.A., Gelbwachs J.A. Water-vapor continuum CO2laser absorption spectra between 27ºC and -10ºC // Appl. Opt. 1983. V. 22. P.3701-3710.[95]. Burch D.E. and Gryvnak D.A. Laboratory investigation of the absorption andemission of infrared radiation // J. Quant. Spectrosc.
Radiat. Transfer. 1966. V. 6.P. 229-240.[96]. Burch D.E. Investigation of the absorption of infrared radiation byatmospheric gases / Semi-annual technical report Philco-Ford CorporationAeronutronic Division Newport Beach CA Rept. U-4784. 1970.[97]. Burch D.E., Gryvnak D.A.
Infrared absorption by CO2 and H2O / ReportAFCRL-TR-78-0154. U.S. Air Force Research Laboratory, Hanscom Air ForceBase, MA. 1978.[98]. Burch D.E., Gryvnak D.A. Continuum absorption by H2O vapor in theinfrared and millimeter wave regions. In Deepak A., Wilkerson T.D., Ruhnke L.H.ed. Atmospheric water vapor. New York : Academic Press. 1980. P. 47-76.[99]. Burch D.E. Continuum absorption by H2O // Proc. SPIE. 1981.V.
277. P. 28–39.196[100]. Burch D.E. Continuum absorption by H2O / Technical report AFGL-TR-810300. U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, MA.1982.[101]. Burch D.E., Alt R.L. Continuum absorption by H2O in the 700-1200 cm-1and 2400-2800 cm-1 windows / Report AFGL-TR-84-0128. U.S.
Air ForceGeophysics Laboratory, Hanscom Air Force Base. MA. 1984.[102]. Burch D.E. Absorption by H2O in narrow windows between 3000 and 4200cm-1 / Report AFGL-TR-85-0036. U.S. Air Force Geophysics Laboratory,Hanscom Air Force Base, MA. 1985.[103]. Aref’ev V.N., Dianov-Klokov V.I., Radionov V.F., Sizov N.I. Laboratorymeasurements of attenuation of CO2 laser radiation by pure water vapor // Opt.Spectrosc. 1975. V. 39. P. 560-561.[104].
Aref’ev V.N., Dianov-Klokov V.I. Attenuation of 10.6-µm radiation bywater vapor and the role of (H2O)2 dimers // Opt. Spectrosc. 1977. V. 42. P. 488492.[105]. Dianov-Klokov V.I., Ivanov V.M., Aref’ev V.N., Sizov N.I. Water vaporcontinuum absorption at 8-13 μm // J. Quant. Spectrosc. Radiat.
Transfer. 1981. V.25. P. 83-92.[106]. Aref’ev V.N. Molecular water vapor absorption of radiation in the 8-13 μmatmospheric relative transparency window // Atmos. Ocean. Opt. 1989. V. 2. №10. P. 878-894.[107]. Grant W.B. Water vapor absorption coefficients in the 8-13-micrometerspectral region: A critical review // Appl. Opt. 1990. V. 29. P. 451-462.[108]. White K.O., Watkins W.R., Bruce Ch.W., Meredith R.E. and Smith F.G.Water vapor continuum absorption in the 3.5-4.0 μm region // Appl.
Opt. 1978. V.17. P. 2711-2720.[109] Watkins W.R., White K.O., Bower L.R. and Sojka B.Z. Pressuredependence of the water vapor continuum absorption in the 3.5-4.0 μm region //Appl. Opt. 1979. V. 18. № 8. P. 1149-1160.197[110] Watkins W.R., Spellicy R.L., White K.O., Sojka B.Z. and Bower L.R. Watervapor absorption coefficients at HF laser wavelengths (2 .64-2.93 μm) // Appl.Opt. 1979. V. 18. № 10.
P. 1582-1589.[111]. Ma Q., Tipping R.H. The averaged density matrix in the coordinaterepresentation: application to the calculation of the far-wing line shapes for H2O //J. Chem. Phys. 1999. V.111. P. 5909-5921.[112]. Ma Q., Tipping R.H., Leforestier C. Temperature dependences ofmechanisms responsible for the water-vapor continuum absorption: I. Far wings ofallowed lines // J. Chem. Phys. 2008.
V. 128. P. 124313.[113]. Bogdanova Yu.V., Rodimova O.B. Calculation of water vapor absorption ina broad temperature interval // J. Quant. Spectrosc. Radiat. Transfer. 2010. V. 111.P. 2298-2307.[114]. Klimeshina Т.Е., Bogdanova Yu.V., Rodimova O.B. Water vaporcontinuum absorption in the 8-12 and 3-5 μm atmospheric transparency windows// Atmos. Ocean Optics. 2011. V. 24. P. 765-769.[115]. Roberts R.E., Selby J.E.A. and Biberman L.M.
Infrared continuumabsorption by atmospheric water vapor in the 8-12 mm window // Appl. Opt. 1976.V. 15. P. 2085-2090.[116]. Varanasi P. On the nature of the infrared spectrum of water vapor between 8and 14 μm // J. Quant. Spectrosc. Radiat. Transfer. 1988. V. 40.
№ 3. P. 169-175.[117]. Вигасин А.А., Членова Г.В. Спектр димеров воды в области длин волн≥ 8 мкм и ослабление излучения в атмосфере. // Изв. АН СССР. Сер. ФАО.1984. Т. 20. С. 657–661.[118]. Vigasin A.A. Water vapor continuum absorption in various mixtures:possible role of weakly bound complexes // J. Quant. Spectrosc.
Radiat. Transfer.2000. V. 64. P. 25–40.[119]. Vigasin A.A. Bimolecular absorption in atmospheric gases. In: CamyPeyret C., Vigasin A.A. (eds). Weakly interacting molecular pairs: unconventionalabsorbers of radiation in the atmosphere / Kluwer. Netherlands. 2003. P. 23–47.198[120] Scribano Y., Leforestier C.
Contribution of water dimer absorption to themillimeter and far infrared atmospheric water continuum // J. Chem. Phys. 2007.V.126. P. 234301.[121]. Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M. Pure water vaporcontinuum measurements between 3100 and 4400 cm-1: evidence for water dimerabsorption in near atmospheric conditions // Geophys.
Res. Lett. 2007. V. 34.L12808.[122]. Ptashnik I.V., Shine K.P., Vigasin A.A. Water vapour self-continuum andwater dimers. 1. Review and analysis of recent work // J. Quant. Spectrosc. Radiat.Transfer. 2011. V. 112. P. 1286–1303.[123]. Спектроскопия взаимодействующих молекул / под. ред. Буланин М.О.Ленинград : ЛГУ. 1970. 192 с.[124]. Van Kranendonk J. Theory of induced infrared absorption // Physica. 1957.V. 23. P. 825-837.[125]. Poll J.D., van Kranendonk J. Theory of translational absorption in gases //Can. J. Phys. 1961. V. 39.
P. 189-204.[126]. Poll J., Hunt J. On the moments of the pressure-induced spectra of gases //Can. J. Phys. 1976. V. 54. P. 461-474.[127]. Colpa J.P. Induced absorption in the infrared / In van Itterbeck A. ed.,Physics of high pressure and the condensed phase. North-Holland, Amsterdam,1965. P. 490-524.[128]. Vigasin A.A. On the nature of collision-induced absorption in gaseoushomonuclear diatomics // J.
Quant. Spectrosc. Radial. Transfer. 1996. V. 56. № 3.P. 409-422.[129]. Filippov N.N., Tonkov M.V. Line mixing in the infrared spectra of simplegases at moderate and high densities // Spectrochim. Acta A. 1996. V. 52. P. 901918.[130]. Brown A., Tipping R.H. Collision-induced absorption in dipolar molecule homonuclear diatomic pairs. Eds. Camy-Peyret C., Vigasin A.A. / WeaklyInteracting Molecular Pairs: Unconventional Absorbers of Radiation in the199Atmosphere. Proceedings of the NATO advanced research workshop. Dordrecht :Kluwer Academic Publishers. 2003. P.
93-99.[131]. Tobin D.C., Strow L.L., Lafferty W.J., Olson W.B. Experimentalinvestigation of the self- and N2-broadened continuum within the ν2 band of watervapor // Appl. Opt. 1996. V. 35. P. 4724-4734.[132]. Баранов Ю.И. Исследование формы крыльев линий в ИК-спектрахпоглощения окиси и двуокиси углерода : дисс. канд. физ.-мат. наук / ЛГУ.Ленинград, 1982. с.[133]. Baranov Y.I., Vigasin A.A. Collision-induced absorption by CO2 in theregion of ν1, 2ν2 // J.
Mol. Spectrosc. 1999. V. 193. P. 319-325.[134]. Baranov Yu.I., Lafferty W.J., Ma Q., Tipping R.H. Water vapor continuumabsorption in the 800–1250 cm−1 spectral region at temperatures from 311 to 363K // J. Quant. Spectrosc. Radiat. Transfer. 2008. V. 109. P. 2291-2302.[135]. Toth R.A. Line positions and strengths of CO2 in the 1200-1430 cm-1 region// Appl. Opt. 1995.
V. 24. № 2. P. 261-274.[136]. Baranov Yu.I., Fraser G.T., Lafferty W.J., Vigasin A.A. Collision-inducedabsorption in the CO2 Fermi triad for temperatures from 211K to 296K.Proceedings of the NATO advanced research workshop. Weakly interactingmolecular pairs: Unconventional absorbers of radiation in the atmosphere. Eds.Camy-Peyret C. and Vigasin A.A. Dordrecht : Kluwer Academic Publishers, 2003.[137]. Baranov Yu.I., Lafferty W.J. The water-vapor continuum and selectiveabsorption in the 3–5 μm spectral region at temperatures from 311 to 363 K // J.Quant.