Диссертация (1145336), страница 42
Текст из файла (страница 42)
Norm-conserving pseudopotentials // Phys. Rev.Lett. 1979. Т. 43, № 20. С. 1494–1497.205. Kleinman L., Bylander D.M. Efficacious form for model pseudopotentials // Phys.Rev. Lett. 1982. Т. 48, № 20. С. 1425–1428.206. Pickett W.E. Pseudopotential methods in condensed matter applications // Comput.Phys. Reports. 1989. Т.
9, № 3. С. 115–197.207. Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalueformalism // Phys. Rev. B. 1990. Т. 41, № 11. С. 7892–7895.208. Sun T. и др. Lattice dynamics and thermal equation of state of platinum // Phys.256Rev. B. 2008. Т. 78, № 2. С. 24304-1–12.209. Giannozzi P. и др. QUANTUM ESPRESSO: A modular and open-source softwareproject for quantum simulations of materials // J. Phys.
Condens. Matter. 2009. Т.21, № 39. С. 395502-1–19.210. Pauw B.R. и др. Cubic MgH2 stabilized by alloying with transition metals: A densityfunctional theory study // Acta Mater. 2008. Т. 56, № 13. С. 2948–2954.211. Tao S.X. и др. First principle study of hydrogen diffusion in equilibrium rutile, rutilewith deformation twins and fluorite polymorph of Mg hydride // Int.
J. HydrogenEnergy. Elsevier Ltd, 2011. Т. 36, № 18. С. 11802–11809.212. Junkaew A. и др. Stabilization of bcc Mg in thin films at ambient pressure:Experimental evidence and ab initio calculations // Mater. Res. Lett. 2013. Т. 1, №3. С. 161–167.213.
Chattaraj D., Majumder C., Dash S. Structural, electronic, elastic and thermodynamicproperties of Zr2Fe and Zr2FeH5: A comprehensive study using first principlesapproach // J. Alloys Compd. Elsevier B.V., 2014. Т. 615. С. 234–242.214. Korringa J. On the calculation of the energy of a Bloch wave in a metal // Physica.1947. Т. 13, № 6–7. С. 392–400.215. Kohn W., Rostoker N. Solution of the Schrödinger equation in periodic lattices withan application to metallic lithium // Phys. Rev.
1954. Т. 94, № 5. С. 1111–1120.216. Soven P. Coherent-potential model of substitutional disordered alloys // Phys. Rev.1967. Т. 156, № 3. С. 809–813.217. Гельчинский Б.Р., Мирзоев А.А., Воронцов А.Г. Вычислительные методымикроскопической теории металлических расплавов и нанокластеров / подред. ФИЗМАТЛИТ.
Москва, 2011. 200 с.218. Ogura M., Akai H. The full potential Korringa-Kohn-Rostoker method and itsapplication in electric field gradient calculations // J. Phys. Condens. Matter. 2005.Т. 17, № 37. С. 5741–5755.219. Ebert H., Ködderitzsch D., Minár J. Calculating condensed matter properties usingthe KKR-Green’s function method - Recent developments and applications //Reports Prog. Phys. 2011. Т.
74, № 9. С. 96501-1–48.257220. Zabloudil J. и др. Electron scattering in solid matter // A Theoretical andComputational Treatise. Springer Series in Solid-state Sciences. Vol. 147 / под ред.P. W. Berlin: Springer, 2005. С. 379.221. Bansil A. и др. Electronic structure and magnetism of Fe3-xVxX (X=Si, Ga, and Al)alloys by the KKR-CPA method // Phys. Rev. B. 1999. Т.
60, № 19. С. 13396–13412.222. Jodin L. и др. Effect of substitutions and defects in half-Heusler FeVSb studied byelectron transport measurements and KKR-CPA electronic structure calculations //Phys. Rev. B. 2004. Т. 70, № 18. С. 184207-1–11.223. Kutorasiński K., Tobola J., Kaprzyk S. Calculating electron transport coefficients ofdisordered alloys using the KKR-CPA method and Boltzmann approach: Applicationto Mg2Si1-xSnx thermoelectrics // Phys. Rev. B - Condens. Matter Mater. Phys. 2013.Т. 87, № 19.
С. 195205-1–9.224. Jin K. и др. Tailoring the physical properties of Ni-based single-phase equiatomicalloys by modifying the chemical complexity // Sci. Rep. Nature Publishing Group,2016. Т. 6. С. 20159-1–10.225. Pindor A.J., Temmerman W.M., Gyorffy B.L. KKR CPA for two atoms per unit cell:Application to Pd and PdAg hydrides // J. Phys.
F Met. Phys. 1983. Т. 13, № 8. С.1627–1644.226. Hara M. и др. Evaluation of terminal composition of palladium-silver hydrides inplateau region by electronic structure calculations // J. Alloys Compd. Elsevier B.V.,2013. Т. 580. С. S202–S206.227. Shelyapina M.G. и др. KKR-CPA study of the electronic and magnetic structures ofdisordered Pd1-yNiy alloys and their hydrides. 2003. Т. 357.
С. 218–222.228. Lyalin A. и др. Evolution of electronic and ionic structure of Mg-clusters with thegrowth cluster size // Phys. Rev. A. 2003. Т. 67, № 6. С. 63203-1–13.229. Wu Z., Allendorf M.D., Grossman J.C. Quantum Monte Carlo simulation of nanoscaleMgH2 cluster thermodynamics. 2009. Т. 131, № 39. С. 13918–13919.230. Shevlin S.A., Guo Z.X. MgH2 dehydrogenation thermodynamics: Nanostructuringand transition metal doping // J. Phys. Chem.
C. 2013. Т. 117, № 21. С. 10883–10891.258231. Pozzo M., Alfè D. Structural properties and enthalpy of formation of magnesiumhydride from quantum Monte Carlo calculations // Phys. Rev. B. 2008. Т. 77, № 10.С. 104103.232. Smithson H. и др. First-principles study of the stability and electronic structure ofmetal hydrides // Phys.
Rev. B. 2002. Т. 66, № 14. С. 144107-1–10.233. Alapati S. V, Karl Johnson J., Sholl D.S. Using first principles calculations to identifynew destabilized metal hydride reactions for reversible hydrogen storage. // Phys.Chem. Chem. Phys. 2007. Т. 9, № 12. С. 1438–1452.234. Dantzer P., Kleppa O.J., Melnichak M.E. High-temperature thermodynamics of theTi-H2 and Ti-D2 systems // J. Chem. Phys. 1976.
Т. 64, № 1. С. 139–147.235. Wiswall R. Hydrogen storage in metals // Hydrogen in metals II: Applicationoriented properties / под ред. Alefeld G., Völkl J. Berlin, Heidelberg: Springer BerlinHeidelberg, 1978. С. 201–242.236. Griessen R., Riesterer T. Heat of formation model // Hydrogen in intermetalliccompounds I, Topics in applied physics, Vol.
63 / под ред. Schlapbach L. Berlin:Springer, 1988. С. 219–284.237. Bouten P.C.P., Miedema A.R. On the heats of formation of the binary hydrides oftransition metals // J. Less-Common Met. 1980. Т. 71, № 1. С. 147–160.238. Shelyapina M. DFT study of metal-hydrogen systems for hydrogen storage //Advances in Materials Science Research / под ред.
Wythers M.C. New York: NovaScience Publishers, 2016. С. 185–206.239. Newing R.A. Uncertainty principle and the zero-point energy of the harmonicoscillator // Nature. 1935. С. 395.240. Kunc K. Recent results in semiconductor dynamics by ab initio ‘direct’ approach //Electronic structure, dynamics, and quantum structural properties of condensedmatter / под ред.
Devreese J.T., van Camp P. New York: Plenum, 1985. С. 227–312.241. Wei S., Chou M.Y. Ab initio calculation of force constants and full phonondispersions // Phys. Rev. Lett. 1992. Т. 69, № 19. С. 2799–2802.242. Frank W., Elsässer C., Fähnle M. Ab initio force-constant method for phonondispersions in alkali metals // Phys. Rev. Lett. 1995. Т. 74, № 10. С. 1791–1794.259243. Kresse G., Furthmüller J., Hafner J.
Ab initio force constant approach to phonondispersion relations of diamond and graphite // Europhys. Lett. 1995. Т. 32, № 9. С.729–734.244. Parlinski K., Li Z., Kawazoe Y. First-principles determination of the soft mode incubic ZrO2 // Phys. Rev. Lett. 1997. Т. 78, № 21.
С. 4063–4066.245. Baroni S., Giannozzi P., Testa A. Green’s-function approach to linear response insolids // Phys. Rev. Lett. 1987. Т. 58, № 18. С. 1861–1864.246. Giannozzi P. и др. Ab initio calculation of phonon dispersions in semiconductors //Phys. Rev. B. 1991. Т. 43, № 9. С. 7231–7242.247. Gonze X., Teter M.P., Allan D.C. Dielectric tensor, effective charges, and phonons inα-quartz by variational density functional-perturbation theory // Phys. Rev. Lett.1992.
Т. 68, № 24. С. 3603–3606.248. Savrasov S.Y. Linear-response calculations of lattice dynamics using muffin-tinbasis sets // Phys. Rev. Lett. 1992. Т. 69, № 19. С. 2013–2016.249. Savrasov D.Y., Savrasov S.Y. Electron-phonon interactions and related physicalproperties of metals from linear-response theory // Phys. Rev. B. 1996. Т.
54, № 23.С. 16487–16501.250. Ismail и др. Surface oscillatory thermal expansion: Mg(1010) // Phys. Rev. B. 2001.Т. 63, № 23. С. 233401-1–4.251. Grabowski B. и др. Ab initio up to the melting point: Anharmonicity and vacanciesin aluminum // Phys. Rev. B. 2009. Т. 79, № 13. С. 134106-1–16.252. Fischer A. и др. Thermal and vibrational properties of thermoelectric ZnSb:Exploring the origin of low thermal conductivity // Phys. Rev. B. 2015. Т. 91, № 22.С. 224309-1–13.253. Ohba N. и др. First-principles study on thermal vibration effects of MgH2 // Phys.Rev.
B. 2004. Т. 70, № 3. С. 35102-1–7.254. Vajeeston P., Ravindran P., Fjellvåg H. Phonon, IR, and raman spectra, NMRparameters, and elastic constant calculations for AlH3 polymorphs // J. Phys. Chem.A. 2011. Т. 115, № 39. С. 10708–10719.255. Hector L.G.J. и др. Ab Initio thermodynamic and elastic properties of alkaline-earth260metals and their hydrides // Phys. Rev. B.
2007. Т. 76. С. 14121-1–18.256. Сенин М.Д. и др. Получение, структура и свойства гидрида бериллия //Неорганические материалы. 1993. Т. 29, № 12. С. 1582–1585.257. NIST-JANAF thermochemical tables. 4th изд. / под ред. Chase M.W. New York:Washington, D.C.: American Chemical Society; Woodbury: American Institute ofPhysics for the National Institute of Standards and Technology, 1998.258. CRC handbook of chemistry and physics.
80th изд. / под ред. Lide D.R. Boca Raton:CRC Press, 1999.259. Zhang J. и др. First-principles investigation of Mg2Ni phase and high/lowtemperature Mg2NiH4 complex hydrides // J. Phys. Chem. Solids. 2009. Т. 70, № 1.С. 32–39.260. Wert C., Zener C. Interstitia atomic diffusion coefficients // Phys. Rev. 1949. Т.
76,№ 8. С. 1169–1175.261. Kehr K.W. Theory of the diffusion of hydrogen in metals // Hydrogen in metals I. /под ред. Alefeld G., Völkl J. Berlin Heidelberg: Springer, 1978. С. 197–226.262. Zener C. Theory of D0 for atomic diffusion in metals // J. Appl. Phys. 1951. Т. 22, №4. С. 372–375.263.
Кулабухова Н.А. и др. Исследование диффузии атома водорода в кристаллахГЦК-металлов методом молекулярной динамики // Известия вузов.Физика.2011. Т. 54, № 12. С. 86–91.264. Klyukin K., Shelyapina M.G., Fruchart D. DFT calculations of hydrogen diffusion andphase transformations in magnesium // J. Alloys Compd. Elsevier B.V., 2015. Т. 644.С. 371–377.265.