Диссертация (1145336), страница 40
Текст из файла (страница 40)
С.230–234.24799.Kyoi D. и др. Hydrogen desorption properties of FCC super-lattice hydride Mg7NbHxprepared by ultra-high pressure techniques // J. Alloys Compd. 2007. Т. 428, № 1–2. С. 268–273.100. Kyoi D. и др. Synthesis of FCC Mg-Ta hydrides using GPa hydrogen pressuremethod and their hydrogen-desorption properties // J. Alloys Compd. 2008. Т. 463,№ 1–2. С. 306–310.101.
Vermeulen P. и др. Crystal structures of MgyTi100-y thin film alloys in the asdeposited and hydrogenated state // Int. J. Hydrogen Energy. Elsevier Ltd, 2008. Т.33, № 20. С. 5646–5650.102. Song G.L., Haddad D. The topography of magnetron sputter-deposited Mg-Ti alloythin films // Mater. Chem. Phys. Elsevier B.V., 2011. Т.
125, № 3. С. 548–552.103. Iliescu I. и др. Morphology and microstructure of Mg-Ti-H films deposited bymicrowave plasma-assisted co-sputtering // J. Alloys Compd. 2017. Т. 708. С. 489–499.104. Nielsen T.K., Besenbacher F., Jensen T.R. Nanoconfined hydrides for energy storage// Nanoscale. 2011. Т. 3, № 5. С. 2086–2098.105. Wagemans R.W.P. и др. Hydrogen storage in magnesium clusters: Quantumchemical study // J. Am. Chem.
Soc. 2005. Т. 127, № 47. С. 16675–16680.106. Koch C.C. Synthesis of nanostructured materials by mechanical milling: problemsand opportunities // Nanostructured Mater. 1997. Т. 9, № 1–8. С. 13–22.107. De Jongh P.E. и др. The preparation of carbon-supported magnesium nanoparticlesusing melt infiltration // Chem. Mater. 2007. Т.
19, № 24. С. 6052–6057.108. Aguey-Zinsou K.F., Ares-Fernández J.R. Synthesis of colloidal magnesium: A nearroom temperature store for hydrogen // Chem. Mater. 2008. Т. 20, № 2. С. 376–378.109. Zhang X. и др. Synthesis of magnesium nanoparticles with superior hydrogenstorage properties by acetylene plasma metal reaction // Int. J. Hydrogen Energy.Elsevier Ltd, 2011.
Т. 36, № 8. С. 4967–4975.110. Anastasopol A. и др. Reduced enthalpy of metal hydride formation for Mg-Tinanocomposites produced by spark discharge generation // J. Am. Chem. Soc. 2013.248Т. 135, № 21. С. 7891–7900.111. Vajo J.J. и др. Altering hydrogen storage properties by hydride destabilizationthrough alloy formation: LiH and MgH2 destabilized with Si // J. Phys. Chem. B.2004.
Т. 108, № 37. С. 13977–13983.112. Pinkerton F.E. и др. Phase boundaries and reversibility of LiBH4/MgH2 hydrogenstorage material // J. Phys. Chem. C Lett. 2007. Т. 111. С. 12881–12885.113. Van Mal H.H., Buschow K.H.J., Miedema A.R. Hydrogen absorption in LaNi5 andrelated compounds: Experimental observations and their explanation // J. LessCommon Met. 1974. Т. 35, № 1. С. 65–76.114. Shao H. и др. Thermodynamic property study of nanostructured Mg-H, Mg-Ni-H,and Mg-Cu-H systems by high pressure DSC method // J.
Nanomater. 2013. Т. 2013.С. 1.115. Johnson J.R. Reaction of hydrogen with the high temperature (C14) form of TiCr 2 //J. Less Common Met. Elsevier, 1980. Т. 73, № 2. С. 345–354.116. Zotov T.A. и др. IMC hydrides with high hydrogen dissociation pressure // J. AlloysCompd. Elsevier, 2011. Т. 509. С. S839–S843.117. Burch R., Mason B. Absorption of hydrogen by titanium–cobalt and titanium–nickelintermetallic alloys.
Part 1.—Experimental results // J. Chem. Soc. Faraday Trans. 1Phys. Chem. Condens. Phases. 1979. Т. 75. С. 561–577.118. Mazzolai G. и др. Hydrogen-storage capacities and H diffusion in bcc TiVCr alloys //J. Alloys Compd. 2008. Т. 466, № 1–2. С. 133–139.119. Switendick A.C. Band structure calculations for metal hydrogen systems //Zeitschrift für Phys. Chemie. 1979. Т. 117, № 117. С. 89–112.120.
Westlake D.G. A geometric model for the stoichiometry and interstitial siteoccupancy in hydrides (deuterides) of LaNi5, LaNi4Al and LaNi4Mn // J. LessCommon Met. 1983. Т. 91, № 2. С. 275–292.121. Vajeeston P. и др. Short hydrogen-hydrogen separation in RNiInH1.333 (R = La, Ce,Nd) // Phys.
Rev. B. 2003. Т. 67, № 1. С. 14101-1–11.122. Yartys V.A. и др. Short hydrogen–hydrogen separations in novel intermetallichydrides, RE3Ni3In3D4 (RE=La, Ce and Nd) // J. Alloys Compd. 2002. Т. 330–332. С.249132–140.123. Pöttgen R., Chevalier B. Cerium intermetallics with ZrNiAl-type structure - A review// Zeitschrift fur Naturforsch.
- Sect. B J. Chem. Sci. 2015. Т. 70, № 5. С. 289–304.124. Vajeeston P. и др. Electronic structure, phase stability, and chemical bonding inTh2Al and Th2AlH4 // Phys. Rev. B. 2002. Т. 65, № 7. С. 75101.125. Zolliker P. и др. Structural Studies of the Hydrogen Storage Material Mg 2NiH4. 2.Monoclinic Low-Temperature Structure // Inorg. Chem. 1986.
Т. 25, № 20. С.3590–3593.126. García G., Abriata J., Sofo J. Calculation of the electronic and structural properties ofcubic Mg2NiH4 // Phys. Rev. B. 1999. Т. 59, № 18. С. 11746–11754.127. Takahashi Y., Yukawa H., Morinaga M. Alloying effects on the electronic structure ofMg2Ni intermetallic hydride // J. Alloys Compd.
1996. Т. 242, № 1–2. С. 98–107.128. Haussermann U., Blomqvist H., Noréus D. Bonding and stability of the hydrogenstorage material Mg2NiH4 // Inorg. Chem. 2002. Т. 41, № 14. С. 3684–3692.129. Hosni B. и др. Electrochemical properties of Ti2Ni hydrogen storage alloy // Int. J.Hydrogen Energy. Elsevier Ltd, 2017. Т. 42, № 2. С.
1420–1428.130. Balcerzak M. и др. Hydrogenation properties of nanostructured Ti2Ni-based alloysand nanocomposites // J. Power Sources. Elsevier B.V, 2015. Т. 280. С. 435–445.131. Takeshita H.T. и др. Hydrogenation characteristics of ternary alloys containingTi4Ni2X (X=O, N, C) // J. Alloys Compd. 2000. Т. 311, № 2.
С. 188–193.132. Zavaliy I. и др. Phase-structural characteristics of (Ti1-xZrx)4Ni2O0.3 alloys and theirhydrogen gas and electrochemical absorption-desorption properties // J. AlloysCompd. 2001. Т. 314, № 1–2. С. 124–131.133. Reilly J.J., Wiswall R.H. Formation and properties of iron titanium hydride // Inorg.Chem. 1974.
Т. 13, № 1. С. 218–222.134. Burch R., Mason N.B. Absorption of hydrogen by titanium-cobalt and titaniumnickel intermetallic alloys. Part 1. -Experimental results // J. Chem. Soc. FaradayTrans. 1 Phys. Chem. Condens. Phases. 1979. Т. 75. С. 561–577.135. Suda T. и др. Effect of surface modification by ion implantation on hydrogenationproperty of TiFe alloy // Mater.
Trans. 2002. Т. 43, № 11. С. 2703–2705.250136. Haraki T. и др. Properties of hydrogen absorption by nano-structured FeTi alloys// Int. J. Mater. Res. 2008. Т. 99, № 5. С. 507–512.137. Hydrogen in intermetallic compounds I / под ред. Schlapbach L. Berlin, Heidelberg,New York, London, Paris, Tokyo: Springer-Verlag, 1988. 350 с.138. Bruzzone G., Olcese G.L. On the crystal structure of TiFe hydrides // Int. J.
HydrogenEnergy. 1980. Т. 5, № 5. С. 535–537.139. Reidinger F., Lynch J.F., Reilly J.J. An X-ray diffraction examination of the FeTi-H2system // J. Phys. F Met. Phys. 1982. Т. 12. С. L49–L55.140. Thompson P., Reilly J.J., Hastings J.M. The application of the Rietveld method to ahighly strained material with microtwins: TiFeD1.9 // J. Appl. Crystallogr.
1989. Т.22. С. 256–260.141. Thompson P. и др. Neutron diffraction study of β iron titanium deuteride // J. Phys.F Met. Phys. 1978. Т. 8, № 4. С. L75–L80.142. Endo N. и др. Formation of BCC TiFe hydride under high hydrogen pressure // Int.J. Hydrogen Energy. Elsevier Ltd, 2013. Т. 38, № 16. С.
6726–6729.143. Endo N. и др. Hydrogenation of a TiFe-based alloy at high pressures andtemperatures // Int. J. Hydrogen Energy. Elsevier Ltd, 2015. Т. 40, № 8. С. 3283–3287.144. Stepanov I.A., Flomenblit Y.M., Zaymovskiy V.A. Influence of hydrogen on thetemperature of the thermoelastic martensitic transformation in titanium nickelide// Phys. Met. Metallogr. 1983. Т. 55, № 3. С. 180–182.145. Wade N., Adachi Y., Hosoi Y. A role of hydrogen in shape memory effect of Ti-Nialloys // Scr. Metall.
Mater. 1990. Т. 24, № c. С. 1051–1055.146. Cuevas F., Latroche M., Percheron-Guégan A. Relationship between polymorphismand hydrogenation properties in Ti0.64Zr0.36Ni alloy // J. Alloys Compd. 2005. Т.404–406, № SPEC. ISS. С. 545–549.147. Young K. hsiung, Nei J. The current status of hydrogen storage alloy developmentfor electrochemical applications // Materials (Basel). 2013. Т. 6, № 10. С. 4574–4608.148. Ribeiro R.M., Lemus L.F., Santos D.S. Dos. Hydrogen absorption study of ti-based251alloys performed by melt-spinning // Mater.
Res. 2013. Т. 16, № 3. С. 679–682.149. Jacob I. и др. A phenomenological model for the hydrogen absorption capacity inpseudobinary laves phase compounds // Solid State Commun. 1977. Т. 23, № 9. С.669–672.150. Shaltiel D., Jacob I., Davidov D. Hydrogen absorption and desorption properties ofAB2 Laves-phase pseudobinary compounds // J. Less-Common Met. 1977.