Диссертация (1145336), страница 41
Текст из файла (страница 41)
Т. 53, №1. С. 117–131.151. Zhu J.H. и др. Enthalpies of formation of binary Laves phases // Intermetallics.2002. Т. 10, № 6. С. 579–595.152. Yadav T.P., Shahi R.R., Srivastava O.N. ynthesis, characterization and hydrogenstorage behaviour of AB2 (ZrFe2, Zr(Fe0.75V0.25)2, Zr(Fe0.5V0.5)2 type materials // Int.J. Hydrogen Energy. Elsevier Ltd, 2012. Т.
37, № 4. С. 3689–3696.153. Ivey B.D.G. Storing hydrogen in AB2 Laves-type compounds. 1986. С. 829–847.154. Stein F., Palm M., Sauthoff G. Structure and stability of Laves phases. Part I. Criticalassessment of factors controlling Laves phase stability // Intermetallics. 2004. Т.12, № 7–9 SPEC. ISS. С. 713–720.155. Thoma D.J., Perepezko J.H. A geometric analysis of solubility ranges in Laves phases// J. Alloys Compd. 1995.
Т. 224, № 2. С. 330–341.156. van Vucht J.H.N., Kuijpers F.A., Bruning H.C.A.M. Reversible room-temperatureabsorption of large quantities of hydrogen by intermetallic compounds // PhilipsRes. reports. 1970. Т. 25. С. 133–140.157. Boser O. Hydrogen sorption in LaNi5 // J. Less-Common Met. 1976. Т. 46, № 1. С.91–99.158. Nahm K. и др.
The reaction kinetics of hydrogen storage in LaNi 5 // Int. J. HydrogenEnergy. 1992. Т. 17, № 5. С. 333–338.159. Sakai T., Matsuoka M., Iwakura C. Rare earth intermetallics for metal-hydrogenbatterie // Handbook on the Physics and Chemistry of Rare Earth. Vol. 21. 1995. С.133–178.160. Thompson P.
и др. The crystal structure of LaNi5D7 // J. Phys. F Met. Phys. 1986. Т.16, № 6. С. 675–685.252161. Lartigue C., Le Bail A., Percheron-Guegan A. A new study of the structure ofLaNi5D6.7 using a modified Rietveld method for the refinement of neutron powderdiffraction data // J. Less Common Met. 1987. Т. 129.
С. 65–76.162. Adzic G.D. и др. Cerium content and cycle life of multicomponent AB 5 hydrideelectrodes // J. Electrochem. Soc. 1995. Т. 142, № 10. С. 3429–3433.163. Černý R. и др. Anisotropic diffraction peak broadening and dislocation substructurein hydrogen-cycled LaNi5 and substitutional derivatives // J. Appl. Crystallogr.2000. Т. 33, № 4. С. 997–1005.164. Joubert J.M. и др. Hydrogen cycling induced degradation in LaNi5-type materials //J.
Alloys Compd. 2002. Т. 330–332. С. 208–214.165. Kumar M.P.S. и др. Effect of Ce ,Co, and Sn substitution on gas phase andelectrochemical hydriding/dehydriding properties of LaNi5 // J. Electrochem. Soc.1995. Т. 142, № 10. С. 3424–3428.166. Liang G., Huot J., Schulz R. Hydrogen storage properties of the mechanically alloyedLaNi5-based materials // J.
Alloys Compd. 2001. Т. 320, № 1. С. 133–139.167. Kadir K., Sakai T., Uehara I. Synthesis and structure determination of a new series ofhydrogen storage alloys; RMg2Ni9 (R=La, Ce, Pr, Nd, Sm and Gd) built from MgNi2Laves-type layers alternating with AB5 layers // J. Alloys Compd. 1997. Т.
257, №1–2. С. 115–121.168. Kadir K. и др. Structural investigation and hydrogen capacity of CaMg 2Ni9: a newphase in the AB2C9 system isostructural with LaMg2Ni9 // J. Alloys Compd. 1999. Т.284, № 1–2. С. 145–154.169. Kohno T. и др. Hydrogen storage properties of new ternary system alloys:La2MgNi9, La5Mg2Ni23, La3MgNi14 // J. Alloys Compd.
2000. Т. 311, № 2. С. 5–7.170. Orimo S., Fujii H. Materials science of Mg-Ni-based new hydrides // Appl. Phys. A.2001. Т. 72, № 2. С. 167–186.171. Akiba E., Hayakawa H., Kohno T. Crystal structures of novel La-Mg-Ni hydrogenabsorbing alloys // J. Alloys Compd. 2006. Т. 408–412. С. 280–283.172. Ozaki T. и др. Stacking structures and electrode performances of rare earth-Mg-Nibased alloys for advanced nickel-metal hydride battery // J. Alloys Compd. 2007. Т.253446–447. С. 620–624.173.
Rodewald U.C., Chevalier B., Pöttgen R. Rare earth-transition metal-magnesiumcompounds-An overview // J. Solid State Chem. 2007. Т. 180, № 5. С. 1720–1736.174. Denys R. V., Yartys V.A. Effect of magnesium on the crystal structure andthermodynamics of the La3-xMgxNi9 hydrides // J. Alloys Compd. 2011.
Т. 509, №SUPPL. 2. С. 540–548.175. Liu W., Webb C.J., Gray E.M.A. Review of hydrogen storage in AB3 alloys targetingstationary fuel cell applications // Int. J. Hydrogen Energy. Elsevier Ltd, 2016. Т. 41,№ 5. С. 3485–3507.176. Liao B. и др. The effect of Al substitution for Ni on the structure andelectrochemical properties of AB3-type La2Mg(Ni1−xAlx)9 (x = 0–0.05) alloys // J.Alloys Compd. 2005. Т. 404–406. С. 665–668.177. Dong Z. и др.
Influences of low-Ti substitution for la and Mg on the electrochemicaland kinetic characteristics of AB3-type hydrogen storage alloy electrodes // Sci.China Technol. Sci. 2010. Т. 53, № 1. С. 242–247.178. Dong Z. и др. Cooperative effect of Co and Al on the microstructure andelectrochemical properties of AB3-type hydrogen storage electrode alloys foradvanced MH/Ni secondary battery // Int. J. Hydrogen Energy.
Elsevier Ltd, 2011.Т. 36, № 1. С. 893–900.179. Liu Y. и др. Rare earth-Mg-Ni-based hydrogen storage alloys as negative electrodematerials for Ni/MH batteries // J. Alloys Compd. Elsevier B.V., 2011. Т. 509, № 3. С.675–686.180. Tsunokake S. и др. Development of hybrid hydrogen storage tank for fuel cellvehicle // International Symposium on Metal - Hydrogen Systems. Fundamentalsand Applications. / под ред. Kojima Y., Kuriyama N. Kyoto, 2012.
С. 451.181. Nakamura J., Fuura T., Tsunokake S. Price reduction of V-based BCC-type alloy forhybrid tank system, loaded in FCV // State-of-the-art Fuel Cells and HydrogenTechnology in Japan / под ред. Ota K. и др. Tokyo: Fuel Cell DevelopmentInformation Center, 2014.182. Nachev S. и др. Mechanical behavior of highly reactive nanostructured MgH2 // Int.254J. Hydrogen Energy. Elsevier Ltd, 2015. Т. 40, № 47.
С. 17065–17074.183. Iba H., Akiba E. The relation between microstructure and hydrogen absorbingproperty in Laves phase-solid solution multiphase alloys // J. Alloys Compd. 1995.Т. 231, № 1–2. С. 508–512.184. Huot J., Akiba E., Iba H. Crystal structure and phase composition of alloys Zr 1xTix(Mn1 - yVy)2-// J. Alloys Compd. 1995. Т. 228, № 2. С. 181–187.185. Iba H., Akiba E. Hydrogen absorption and modulated structure in Ti–V–Mn alloys //J.
Alloys Compd. 1997. Т. 253–254. С. 21–24.186. Maeland A.J., Libowitz G.G., Lynch J.P. Hydride formation rates of titanium-basedb.c.c. solid solution alloys // J. Less-Common Met. 1984. Т. 104, № 2. С. 361–364.187. Libowitz G.G., Maeland A.J. Hydride formation by B.C.C. solid solution alloys //Mater. Sci. Forum. 1988. Т. 31.
С. 177–196.188. Akiba E., Iba H. Hydrogen absorption by Laves phase related BCC solid solution //Intermetallics. 1998. Т. 6, № 6. С. 461–470.189. Pei P. и др. The effect of rapid solidification on the microstructure and hydrogenstorage properties of V35Ti25Cr40 hydrogen storage alloy // Int. J. Hydrogen Energy.Elsevier Ltd, 2009. Т. 34, № 19.
С. 8094–8100.190. Tousignant M., Huot J. Replacement of vanadium by ferrovanadium in Ti-based BCCslloys for hydrogen storage // Solid State Phenom. 2011. Т. 170. С. 144–149.191. Bibienne T. и др. Synthesis and hydrogen sorption properties of TiV(2-x)Mnx BCCalloys // J. Alloys Compd. Elsevier B.V., 2015. Т. 624.
С. 247–250.192. Баврина О.О., Шеляпина М.Г. Энергия растворения водорода в ГЦК-гидридахнеупорядоченных сплавов Ti-V-Cr по данным теории функционала плотности// Физика Твердого Тела. 2017. Т. 59, № 10. С. 1875–1878.193. Hohenberg P., Kohn W. Inhomogeneous electron gas // Phys. Rev. 1964. Т. 136, №3B. С. B864–B871.194. Kohn W., Sham L.J. Self-consistent equations including exchange and correlationeffects // Phys. Rev. 1965. Т. 140, № 4A.
С. A1133–A1138.195. Becke A.D. Density‐functional thermochemistry. III. The role of exact exchange // J.Chem. Phys. 1993. Т. 98, № 7. С. 5648–5652.255196. Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation madesimple // Phys. Rev. Lett. 1996. Т. 77, № 18. С. 3865–3868.197. Wimmer E. и др. Full-potential self-consistent linearized-augmented-plane-wavemethod for calculating the electronic structure of molecules and surfaces: O 2molecule // Phys.
Rev. B. 1981. Т. 24, № 2. С. 864–875.198. Blaha P. и др. An augmented plane wave + local orbitals program for calculatingcrystal properties. Technical Universität Wien Austria, 2001.199. Schwarz K., Blaha P., Madsen G.K.H. Electronic structure calculations of solids usingthe WIEN2k package for material sciences // Comput. Phys.
Commun. 2002. Т. 147,№ 1–2. С. 71–76.200. Blaha P. и др. WIEN2k_14.2 [Электронный ресурс] // SCM, Theoretical Chemistry,VrijeUniversiteit,Amsterdam,TheNetherlands,.2014.URL:http://susi.theochem.tuwien.ac.at/ (дата обращения: 14.06.2017).201. Subedi A., Singh D.J. Bonding in Zintl phase hydrides: Density functionalcalculations for SrAlSiH, SrAl2H2, SrGa2H2, and BaGa2H2 // Phys. Rev. B. 2008.
Т. 78,№ 4. С. 45106-1–7.202. Novaković N. и др. Ab initio study of MgH2 formation // Mater. Sci. Eng. B SolidState Mater. Adv. Technol. 2009. Т. 165, № 3. С. 235–238.203. Song Y., Guo Z.X., Yang R. Influence of titanium on the hydrogen storagecharacteristics of magnesium hydride: A first principles investigation // Mater. Sci.Eng. A. 2004. Т. 365, № 1–2. С. 73–79.204. Hamann D., Schlüter M., Chiang C.