Диссертация (1145336), страница 45
Текст из файла (страница 45)
2011. Т. 170. С.270227–231.379. Шеляпина М.Г. и др. Электронная структура и стабильность Mg6TiM (M = Mg,Al, Zn) и их гидридов // Физика Твердого Тела. 2011. Т. 53, № 1. С. 8–14.380. Huot J. и др. Direct synthesis of Mg2FeH6 by mechanical alloying // J. Alloys Compd.1998. Т. 280, № 1. С. 306–309.381. Shao H.
и др. Synthesis and hydrogen storage behavior of Mg-Co-H system atnanometer scale // J. Solid State Chem. 2004. Т. 177, № 10. С. 3626–3632.382. Itoh H., Yoshinari O., Tanaka K. Study of hydrogen storage in Mg2Ni by thermaldesorption spectrometry // J. Alloys Compd. 1995. Т. 231. С. 483–487.383. Deledda S., Hauback B.C. The formation mechanism and structural characterizationof the mixed transition-metal complex hydride Mg2(FeH6)0.5(CoH5)0.5 obtained byreactive milling // Nanotechnology. 2009.
Т. 20. С. 204010-1–7.384. Zolliker P. и др. Dimagnesium cobalt(I) pentahydride,Mg2CoH5, containing squarepyramidal (CoH54-) anions // Inorg. Chem. 1985. Т. 24, № 24. С. 4177–4180.385. Шеляпина М.Г. и др. Электронная структура и стабильность сложныхгидридов Mg2MHx (M=Fe, Co) // Физика Твердого Тела.
2012. Т. 54, № 12. С.2209–2217.386. Didisheim J.J. и др. Dimagnesium iron(II) hydride, Mg2FeH6, containing octahedralFeH64- anions // Inorg. Chem. 1984. Т. 23, № 13. С. 1953–1957.387. Ivanov E. и др. Magnesium mechanical alloys for hydrogen storage // J. LessCommon Met. 1987. Т. 131, № 1–2. С. 25–29.388. Bogdanovi B.
и др. Thermodynamics and dynamics of the Mg-Fe-H system and itspotential for thermochemical thermal energy storage // J. Alloys Compd. 2002. Т.345, № 1–2. С. 77–89.389. Retuerto M. и др. High-pressure synthesis of Mg2FeH6 complex hydride // Int. J.Hydrogen Energy.
2010. Т. 35, № 15. С. 7835–7841.390. Reiser A., Bogdanović B., Schlichte K. Application of Mg-based metal-hydrides asheat energy storage systems // Int. J. Hydrogen Energy. 2000. Т. 25, № 5. С. 425–430.391. Miwa K., Fukumoto A. First-principles study on 3d transition-metal dihydrides //271Phys. Rev. B. 2002. Т. 65, № 15. С. 155114-1–7.392. Frankcombe T.J.
The importance of vibrations in modelling complex metal hydrides// J. Alloys Compd. 2007. Т. 446–447. С. 455–458.393. Malka I.E. и др. Iron fluorides assisted dehydrogenation and hydrogenation ofMgH2 studied by Mössbauer spectroscopy // J. Alloys Compd. 2011. Т.
509, № 17. С.5368–5372.394. Siretskiy M.Y. и др. Influence of a transition metal atom on the geometry andelectronic structure of Mg and Mg-H clusters // J. Alloys Compd. 2009. Т. 480, № 1.С. 114–116.395. Шеляпина М.Г., Сирецкий М.Ю. Влияние атомов 3d-металлов на геометрию,электронную структуру и стабильность кластера Mg13H26 // Физика ТвердогоТела. 2010. Т.
52, № 9. С. 1855–1860.396. Gupta M., Singh D.J., Gupta R. Origin of the 20-electron structure of Mg3MnH7:Density functional calculations // Phys. Rev. B. 2005. Т. 71, № 9. С. 92107-1–4.397. Novaković N. и др. Ab initio calculations of MgH2, MgH2:Ti and MgH2:Co compounds// Int. J. Hydrogen Energy. 2010. Т. 35, № 2.
С. 598–608.398. Pelletier J.F. и др. Hydrogen desorption mechanism in MgH2-Nb nanocomposites //Phys. Rev. B. 2001. Т. 63, № 5. С. 52103-1–4.399. Tan X. и др. Body centered cubic magnesium niobium hydride with facile roomtemperature absorption and four weight percent reversible capacity // Phys.
Chem.Chem. Phys. 2012. Т. 14, № 31. С. 10904–10909.400. Klyukin K., Shelyapina M.G., Fruchart D. Modelling of Mg/Ti and Mg/Nb thin filmsfor hydrogen storage // Solid State Phenom. 2011. Т. 170. С. 298–301.401. Tao S.X. и др. DFT studies of hydrogen storage properties of Mg0.75Ti0.25 // J. AlloysCompd. Elsevier B.V., 2011. Т. 509, № 2. С. 210–216.402. Kumar A., Beyerlein I.J., Wang J. First-principles study of the structure of Mg/Nbmultilayers // Appl.
Phys. Lett. 2014. Т. 105, № 7. С. 71602-1–5.403. Ham B. и др. Hydrogen sorption in orthorhombic Mg hydride at ultra-lowtemperature // Int. J. Hydrogen Energy. Elsevier Ltd, 2013. Т. 38, № 20. С. 8328–8341.272404. Burgers W.G. On the process of transition of the cubic-body-centered modificationinto the hexagonal-close-packed modification of zirconium // Physica. 1934. Т. 1,№ 7–12. С. 561–586.405.
Klyukin K., Shelyapina M.G., Fruchart D. Hydrogen induced phase transition inmagnesium: An ab initio study // J. Alloys Compd. Elsevier B.V., 2013. Т. 580, №SUPPL1. С. S10–S12.406. San-Martin A., Manchester F.D. The H-Mg (Hydrogen-Magnesium) system // J.Phase Equilibria. 1987. Т. 8. С. 431–437.407. Sholl D.S. Using density functional theory to study hydrogen diffusion in metals: Abrief overview // J. Alloys Compd. 2007. Т. 446–447. С.
462–468.408. Tao S. и др. Density functional theory studies of the hydrogenation properties of Mgand Ti // Phys. Rev. B. 2009. Т. 79, № 14. С. 1–7.409. Vegge T. Locating the rate-limiting step for the interaction of hydrogen withMg(0001) using Density-Functional Theory calculations and rate theory // Phys.Rev. B - Condens. Matter Mater. Phys. 2004. Т. 70, № 3. С. 1–7.410. Schimmel H.G. и др.
Hydrogen diffusion in magnesium metal (α phase) studied byab initio computer simulations // J. Alloys Compd. 2005. Т. 404–406, № SPEC. ISS.С. 235–237.411. Jacobson N. и др. Hydrogen dynamics in magnesium and graphite // Comput.Mater. Sci. 2002. Т. 24, № 1–2. С. 273–277.412. Olijnyk H., Holzapfel W.B. High-pressure structural phase transition in Mg // Phys.Rev. B. 1985.
Т. 31, № 7. С. 4682–4683.413. Nishimura C., Komaki M., Amano M. Hydrogen permeation through magnesium // J.Alloys Compd. 1999. Т. 293. С. 329–333.414. Uchida H.T., Kirchheim R., Pundt A. Influence of hydrogen loading conditions on theblocking effect of nanocrystalline Mg films // Scr. Mater.
Acta Materialia Inc., 2011.Т. 64, № 10. С. 935–937.415. de Rango P. и др. Nanostructured magnesium hydride for pilot tank development// J. Alloys Compd. 2007. Т. 446–447. С. 52–57.416. Ma T. и др. Nb-gateway for hydrogen desorption in Nb2O5 catalyzed MgH2273nanocomposite // J. Phys. Chem. C. 2013. Т. 117, № 20. С. 10302–10307.417. Miraglia S.
и др. Hydrogen-induced structural transformation in TiV0.8Cr1.2 studiedby in situ neutron diffraction // J. Alloys Compd. 2007. Т. 442, № 1–2 SPEC. ISS. С.49–54.418. Fruchart D. и др. Nanocrystalline composite for storage of hydrogen: пат. 278086USA. US, 2009.419. Lynch J.F., Johnson J.R., Reilly J.J. The dilute solution of hydrogen and deuterium in(C-15) TiCr1.8 // Zeitschrift für Phys. Chemie Neue Folge, Bd. 1979.
Т. 117. С. S. 229243.420. Iba H., Akiba E. Hydrogen-absorbing alloy and process for preparing the same.Google Patents, 2000. № US 6153032.421. Miraglia S. и др. Hydrogen sorption properties of compounds based on BCC Ti1-xV1yCr1+x+yalloys // J. Alloys Compd. 2012. Т. 536.
С. 1–6.422. Bibienne T., Bobet J.L., Huot J. Crystal structure and hydrogen storage properties ofbody centered cubic 52Ti-12V-36Cr alloy doped with Zr7Ni10 // J. Alloys Compd.Elsevier B.V., 2014. Т. 607. С. 251–257.423. Sleiman S., Huot J. Microstructure and hydrogen storage properties of Ti 1V0.9Cr1.1alloy with addition of x wt % Zr (x = 0, 2, 4, 8, and 12) // Inorganics. 2017. Т. 5, №4. С. 86-1–12.424.
Skryabina N.E. и др. Correlation between the hydrogen absorption properties andthe vanadium concentration of Ti-V-Cr based alloys // Solid State Phenom. 2017. Т.257. С. 165–172.425. Noda Y. и др. X-ray structure determination of divanadium hydride, beta1-V2H, anddivanadium deuteride, beta-V2D // Acta Crystallogr. C. 1985. Т.
41. С. 1566–1571.426. Taizhong H. и др. Influence of V content on structure and hydrogen desorptionperformance of TiCrV-based hydrogen storage alloys // Mater. Chem. Phys. 2005. Т.93, № 2–3. С. 544–547.427. Ono S., Nomura K., Ikeda Y. The reaction of hydrogen with allows of vanadium andtitanium // J. Less Common Met. 1980. Т. 72. С. 159–165.428. Akiba E., Nakamura Y. Hydrogenation properties and crystal structures of Ti-Mn-V274BCC solid solution alloys // Met.
Mater. Int. 2001. Т. 7, № 2. С. 165–168.429. Schur D.V. и др. Phase transformations in titanium hydrides // Int. J. HydrogenEnergy. 1996. Т. 21, № lI. С. 1–17.430. Skryabina N. и др. Phase transformations in Ti-V-Cr-H composition // Solid StatePhenom. 2011. Т. 170. С. 302–306.431. Schober T., Wenzl H. The systems NbH(D), TaH(D), VH(D) : Structures, phasediagrams, morphologies, methods of preparation // Hydrogen in Metals II:Application-Oriented Properties / под ред. Alefeld G., Völkl J. Berlin, Heidelberg:Springer Berlin Heidelberg, 1978. С. 11–71.432. Shelyapina M.G. и др. First-principles investigation of the stability of the Ti-V-Crternary alloys and their related hydrides // AIP Conf.
Proc. 2006. Т. 837. С. 104–111.433. Hayashi S. Diffusion of hydrogen isotopes and their mutual perturbation inTi0.33V0.67HxDy (x+y≈0.9) studied by 1H and 2H NMR // J. Solid State Chem. 2003. Т.170, № 1. С. 82–93.434. ШеляпинаМ.Г.идр.Неэмпирическиерасчетыстабильностинеупорядоченных твердых растворов Ti−V−Cr и их гидридов // ФизикаТвердого Тела. 2007. Т.