Диссертация (1145332), страница 30
Текст из файла (страница 30)
579-630.[118] Frank M., Klar A., Pinnau R. Optimal control of glass cooling usingsimplified PN theory // Trans. Theory Stat. Phys. 2010. Vol. 39. № 2-4. P. 282311.221[119] Germogenova T.A., Nikolaeva O.V. Optical tomography problems:Investigation by the methods of the radiation transport theory // Optics andSpectroscopy.
2006. Vol. 101. № 5. P. 769Џ776.[120] Groenhuis R.A., Ferwerda H.A., Ten Bosch J.J. Scattering and absorptionof turbidmaterials determined from reflection measurements. 1: Theory // Appl.Optim. 1983. Vol. 22. № 16. P. 2456-2462.[121] Habelter G.J., Matkowsky B.J. Uniform asymptotic expansion in transporttheory with small mean free paths, and the diffusion approximation // J. Math.Phys. 1975. Vol. 16.
№ 4-5. P. 846-854.[122] Henke B.L., Gullikson E.M., Davis J.C. Atomic data and nuclear datatables // J. Devoted to Complications of Experimental and Theoretical Results.1993. Vol. 54. № 2. P. 181-343.[123] Herty M., Pinnau R., Thömmes G. Asymptotic and discrete concepts foroptimal control in radiative transfer // Z. Angew. Math. Mech. 2007. Vol. 87.№ 5. P.
333-347.[124] Hubbell J.H., Seltzer S.M. Tables of X-ray mass attenuation coefficients andmass energy-absorption coefficients 1 KeV to 20 MeV for elements Z=1 to 92and 48 additional substances of dosimetric interest // NISTIR-5632, Nat. Inst.of Stand. and Technol. Gaithersburg, 1995.[125] Kelley C.T. Existence and uniqueness of solutions of nonlinear systems ofconductive-radiative heat transfer equations // Transport Theory Statist. Phys.1996.
Vol. 25. № 2. P. 249-260.[126] Klar A., Siedow N. Boundary layers and domain decomposition for radiativeheat transfer and diffusion equations: applications to glass manufacturingprocess // Eur. J. Appl. Math. 1998. Vol. 9. № 4. P. 351-372.[127] Kovtanyuk A.E., Prokhorov I.V. Tomography problem for the polarizedradiation transfer equation // J. Inverse and Ill-Posed Problems.
2006. Vol. 14.№ 6. P. 1-12.222[128] Kovtanyuk A.E., Prokhorov I.V. Numerical solution of the inverse problemfor the polarized-radiation transfer equation // Numerical Analysis andApplications. 2008. Vol. 1. №1. P. 46–57.[129] Kovtanyuk A.E., Nefedev K.V., Prokhorov I.V. Advanced computingmethod for solving of the polarized-radiation transfer equation // Lecture Notesin Computer Science.
2010. Vol. 6083. P. 268-276.[130] Kovtanyuk A.E., Prokhorov I.V. Boundary-value problem for the polarizedradiation transfer equation with Fresnel interface conditions in layeredmedium // J. of Computational and Applied Mathematics. 2011. Vol. 235.№8. P. 2006–2014.[131] Kovtanyuk A.E., Botkin N.D., Hoffmann K.-H. Numerical simulations of acoupled conductive-radiative heat transfer model using a modified Monte Carlomethod // Int. J. Heat and Mass Transfer.
2012. Vol. 55. P. 649-654.[132] Kovtanyuk A.E., Prokhorov I.V. Some inverse problem for the polarizedradiation transfer equation // In: Simulation and Optimization of ComplexProcesses. Springer. 2012.[133] Kovtanyuk A.E., Chebotarev A.Yu. An iterative method for solving acomplex heat transfer problem // Applied Mathematics and Computation.2013. Vol. 219.
P. 9356–9362.[134] Kovtanyuk A.E., Prokhorov I.V. Polarized optical imaging problem ofbiological tissues // Int. J. of Biomathematics and Biostatistics. 2013. Vol. 2.№ 1. P. 49–57.[135] Kovtanyuk A.E., Chebotarev A.Yu., Botkin N.D., Hoffmann K.-H. Theunique solvability of a complex 3D heat transfer problem // J. of MathematicalAnalysis and Applications. 2014. Vol.
409. P. 808–815.[136] Kovtanyuk A.E., Chebotarev A.Yu., Botkin N.D., Hoffmann K.-H.Theoretical analysis of an optimal control problem of conductive-convective-223radiative heat transfer // J. of Mathematical Analysis and Applications. 2014.Vol. 412. P. 520–528.[137] Kovtanyuk A.E., Chebotarev A.Yu. Steady-state problem of complex heattransfer // Computational Math. and Math. Physics. 2014. Vol.
54. № 4. P. 719–726.[138] Kovtanyuk A.E., Chebotarev A.Yu., Botkin N.D., Hoffmann K.-H.Unique solvability of a steady-state complex heat transfer model //Communications in Nonlinear Science and Numerical Simulation. 2014. DOI:10.1016/j.cnsns.2014.06.040.[139] Kovtanyuk A.E. The use of GPUs for solving the computed tomographyproblem // J. of Nano- and Electronic Phys. 2014. Vol. 6. № 3. P. 03050-1–03050-4.[140] Kufner A., Fucik S.
Nonlinear Differential Equations, Studies in AppliedMechanics 2. New York: Elsevier, 1980.[141] Larsen E.W., Morel J.E. Asymptotic solution of numerical transportproblems in optically thick, diffuse regimes II // J. Comp. Phys. 1989. Vol. 83.№ 1. P. 212-236.[142] Marshak R. Note on the spherical harmonic method as applied to the Milneproblem for sphere // Phys. Rev. 1947. Vol. 71. № 7. P. 443-446.[143] McCormick N.J. and Kuscer I.
On the inverse problem in radiativetransfer // J. Math. Phys. 1974. Vol. 15. P. 926–927. .[144] Mc.Cormic N.J. and Sanchez R. General solution of inverse transportproblem // J. Math. Phys. 1982. Vol. 22. №4. P. 487–453.[145] McCormick N.J. Methods for solving inverse problems for radiationtransport – an update // Transport Theory and Statist.
Phys. 1986. Vol. 15.P. 759–772.[146] Modest M.F. Radiative Heat Transfer. New York: McGraw-Hill, 1993.224[147] Motamedi M., Rastegar S., LeCarpentier G., Welch A.J. Light andtemperature distribution in laser irradiated tissue: the influence of anisotropicscattering and refractive index // Appl. Optim. 1989.
Vol. 28. № 12. P. 22302237.[148] Natterer F. The Mathematics of Computerized Tomography. – Stuttgart:B.G.Teubner and John Wiley & Sons, 1986.[149] Ozisik M.N. Radiative Transfer and Interaction with Conduction andConvection. New York: John Wiley, 1973.[150] Pinnau R. Analysis of Optimal Boundary Control for Radiative HeatTransfer Modelled by the SPN-System // Comm.
Math. Sci. 2007. Vol. 5. № 4.P. 951-969.[151] Pinnau R., Seaid M. Simplified PN Models and Natural ConvectionRadiation // Math. in Industry. 2008. Vol. 12. P. 397-401.[152] Prokhorov I.V., Yarovenko I.P., and Krasnikova T.V. An extremumproblem for the radiation transfer equation // Journal of Inverse and Ill-PosedProblems. 2005.
Vol. 13. № 4. P. 365-382.[153] Seteikin A.Yu., Gershevich M.M., Ershov I.A. The simulation of theinteraction between low-intensity laser beams and multilayer scatteringbiological materials // Tech. Phys. The Russian J. Appl. Phys. 2002. Vol. 47.№ 1. P. 97-101.[154] Siewert C.E. Determination of the Single Scattering Albedo fromPolarization Measurements of the Rayleigh Atmosphere // Astrophysics andSpace Sciences.
1979. Vol. 60. P. 237-239.[155] Siewert C.E. On the inverse problem for three-term phase function // J.Quant. Spectrosc. Radiat. Transfer. 1979. Vol. 22. P. 441-446.[156] Siewert C.E., Dunnt W.L. On the inverse problem for planeparallel mediawith nonuniform surface illumination // J.
Math. Phys. 1982. Vol. 22. №7.P. 1376–1378.225[157] Siewert C.E., Pinheiro F.J.V. On the Scattering of Polarized Light // J. ofApplied Mathematics and Physics. 1982. Vol. 33. P. 807-817.[158] Siewert C.E. Solution an Inverse Problem in Radiative Transfer withPolarization // J. Quant. Spectrosc. Radiat.
Transfer. 1983. Vol. 30. № 6. P. 523526.[159] Siewert C.E., Thomas J.R. A computational method for solving a class ofcoupled conductive-radiative heat-transfer problems // J. Quant. Spectrosc.Radiat. Transfer. 1991. Vol. 45. № 5. P. 273-281.[160] Siewert C.E. An improved iterative method for solving a class of coupledconductive-radiative heat-transfer problems // J. Quant. Spectrosc. Radiat.Transfer.
1995. Vol. 54. № 4. P. 599-605.[161] Siewert C.E. A discrete-Ordinates Solution for Radiative-Transfer Modelsthat Include Polarization Effects // J. Quantitative Spectroscopy and RadiativeTransfer. 2000. Vol. 64. P. 227-254.[162] Smith O.J., Siewert C.E. The half-space GreenЎs function for anatmosphere with a polarized radiation field // Journal Math. Phys. 1967.Vol. 12.
№ 8. P. 2467Џ2474.[163] Sushkevich T.A., Strelkov S. A. Model of polarized transfer in atmosphereearth surface system // Siberian J. on Numerical Mathematics. 1999. Vol. 2.№ 1. P. 89-98.[164] Thömes G., Pinnau R., Seaïd M., Götz T., Klar A. Numerical methodsand optimal control for glass cooling processes // Trans. Theory Stat. Phys.2002. Vol. 31. № 4-6. P. 513-529.[165] Tse O., Pinnau R., Siedow N. Identification of temperature dependentparameters in a simplified radiative heat transfer // Australian J. Basic andAppl. Sci. 2011.
Vol. 5. № 1. P. 7-14.226[166] Tse O., Pinnau R., Siedow N. Identification of temperature dependentparameters in laser–interstitial thermo therapy // Math. Models Methods Appl.Sci. 2012. Vol. 22. № 9.[167] Tse O., Pinnau R. Optimal control of a simplified natural convectionradiation model // Comm. Math. Sci. 2013. Vol. 11. № 3. P. 679-707.[168] Tuchin V.V. Light scattering study of tissues // Phys.-Usp. 1997. Vol. 40.P.