Диссертация (1138079), страница 28
Текст из файла (страница 28)
197-202).Hirshleifer, D. (2001).Investor psychology and asset pricing. The Journal of Finance, 56(4), 15331597.105.Hotelling, H. (1933). Analysis of a complex of statistical variables intoprincipal components. Journal of Educational Psychology, 24, 417-441, and498-520.106.Huang, W., Lai, K. K., Nakamori, Y., & Wang, S. (2004). Forecastingforeign exchange rates with artificial neural networks: a review. InternationalJournal of Information Technology & Decision Making, 3(01), 145-165.107.Huang, W., Nakamori, Y., & Wang, S.
Y. (2005). Forecasting stockmarket movement direction with support vector machine. Computers &Operations Research, 32(10), 2513-2522.108.Hyvärinen A., Oja E. Independent Component Analysis: Algorithms andApplications//Neural Networks, 13(4-5):411-430, 2000.109.Islami, M.
(2011). Interdependence between foreign exchange markets andstock markets in selected European countries (pp. 27-48). Springer BerlinHeidelberg.110.Jiang J.-Q., Wei-Xing Zhou W.-X., Sornette D., Woodard R., BastiaensenK., Cauwels P.Bubble Diagnosis and Prediction of the 2005-2007 and 20082009 Chinese stock market bubbles, Journal of Economic Behavior &Organization 74 (3), 149-162 (2010).176111.Joho M., Mathis H., Moschytz G.S.
An Fft-Based Algorithm ForMultichannel Blind Deconvolution, Signal and Information ProcessingLaboratory, Swiss Federal Institute of Technology Zurich, 1999.112.Jolliffe I.T. Principal Component Analysis, Springer-Verlag (2nd Ed.),2002.113.Juang, C. F., & Lin, C. T. (1999). A recurrent self-organizing neural fuzzyinference network. Neural Networks, IEEE Transactions on, 10(4), 828-845.114. Kaastra, I., & Boyd, M. (1996). Designing a neural network for forecastingfinancial and economic time series. Neurocomputing, 10(3), 215-236.115.Kahneman D.,Tversky A.
Prospect Theory: An Analysis of DecisionUnder Risk, Econometrica, Volume 47, Issue 2 (Mar.,1979), p. 263-292.116.Kendall G., Su Y. A Particle Swarm Optimisation Approach In TheConstruction of Optimal Risky Portfolios// Proceedings of the 23rd IASTEDInternational Multi-Conference Artificial Intelligence and ApplicationsFebruary 14-16, 2005, Innsbruck, Austria.117.Kendrick, D.
A. (2006). Computational economics. Princeton UniversityPress.118. Kevin, I., Wang, K., Abdulla, W. H., & Salcic, Z. (2007). Multi-agentsystem with hybrid intelligence using neural network and fuzzy inferencetechniques. In New Trends in Applied Artificial Intelligence (pp. 473-482).Springer Berlin Heidelberg.119. Kim, K. J., & Han, I. (2000). Genetic algorithms approach to featurediscretization in artificial neural networks for the prediction of stock priceindex. Expert systems with applications, 19(2), 125-132.120. Kim, S. H., & Hak Chun, S. (1998). Graded forecasting using an array ofbipolar predictions: application of probabilistic neural networks to a stockmarket index.
International Journal of Forecasting, 14(3), 323-337.121. Kimoto, T., Asakawa, K., Yoda, M., & Takeoka, M. (1990, June). Stockmarket prediction system with modular neural networks. In Neural Networks,1990., 1990 IJCNN International Joint Conference on (pp. 1-6). IEEE.177122.Коhоnen Т. "Self-organized formation of topologically соrrect featuremaps", Bio1ogical Cybernetics, 1982, vo1. 43, р.
59-69.123.Kohonen Т. "Exploration of very large databases bу self-organizingmaps", 1997, Interactional Conference оn Neural Networks, 1997, vo1. 1, р.PL1-PL6, Houston.124. Коhоnen Т. "Self-organized formation of topologically соrrect featuremaps", Bio1ogical Cybernetics, 1982, vo1. 43, р. 59¬-69.125. Kohonen Т. "The self-organizing mар", Proceedings of the Institute ofElectrical and Electronics Engineers, 1990, vo1. 78, р.
1464-1480.126.Krink, T., VesterstrOm, J. S., & Riget, J. (2002). Particle swarmoptimisation with spatial particle extension. In Evolutionary Computation,2002. CEC'02. Proceedings of the 2002 Congress on (Vol. 2, pp. 1474-1479).IEEE.127. Kuan, C. M., & Liu, T. (1995). Forecasting exchange rates usingfeedforward and recurrent neural networks. Journal of Applied Econometrics,10(4), 347-364.128.Kullback S., Leibler R.A. On Information and sufficiency, Annals ofMathematical Statistics 22 (1), 1951, p. 79–86.129.Kröse B., van der Smagt P. An Introduction To Neural Networks, EightEdition, November 1996.130. Kwak, N., Kim, C., & Kim, H.
(2008). Dimensionality reduction based onICA for regression problems. Neurocomputing, 71(13), 2596-2603.131.Kwon Y.-K., Moon B.-R. A Hybrid Neurogenetic Approach for StockForecasting. IEEE Transactions On Neural Networks, vol. 18, no. 3, may2007.132. Lai, K.
K., Yu, L., & Wang, S. (2005). A neural network and web-baseddecision support system for forex forecasting and trading. In Data Mining andKnowledge Management (pp. 243-253). Springer Berlin Heidelberg.133.Lawrence J. Introduction to Neural Networks. California ScientificSoftware Press, 1994.178134.Lawrence, S., Giles, C. L., & Tsoi, A.
C. (1997, July). Lessons in neuralnetwork training: Overfitting may be harder than expected. In AAAI/IAAI(pp. 540-545).135.LeBaron B. A Builder’s Guide to Agent Based Financial Markets//Brandeis University, February 2001.136.LeBaron B. Agent Based Computational Finance: Suggested Readings andEarly Research// Graduate School of International Economics and FinanceBrandeis University, October 1998.137.LeBaronB.Agent-BasedComputationalFinance.HandbookofComputational Economics, Vol. 2: Agent-Based Computational Economics,Handbooks in Economics Series, North-Holland/Elsevier, Amsterdam, Spring2006.138.LeBaron B.
Building the Santa Fe Artificial Stock Market// BrandeisUniversity, June 2002.139. Lee, I. H. (1998). Market crashes and informational avalanches. TheReview of Economic Studies, 65(4), 741-759.140. Leng, G., Prasad, G., & McGinnity, T. M. (2004). An on-line algorithm forcreating self-organizing fuzzy neural networks.
Neural Networks, 17(10),1477-1493.141. Lin, J. C., Li, Y. H., & Liu, C. H. (2007, July). Building Time SeriesForecasting Model By Independent Component Analysis Mechanism. InWorld Congress on Engineering (pp. 1010-1015).142. Liu, H., & Wang, J. (2011). Integrating independent component analysisand principal component analysis with neural network to predict Chinese stockmarket. Mathematical Problems in Engineering, 2011.143.Liu Y., Starzhyk J.A., Zhu Z. Optimized approximation algorithm inneural networks without overfitting. Journal IEEE Transactions on NeuralNetworks Volume 19 Issue 6, p.
983-995, 2008.144.Lorenz E. N. Deterministic Nonperiodic Flow". Journal of theAtmospheric Sciences 20 (2): 130–141, March, 1963.179145.Lu C.-J., Le T.-S., Chiu C.-C. Financial time series forecasting usingindependent component analysis and support vector regression//DecisionSupport Systems 47 (2009) 115–125.146.Majhi R., Panda G., Sahoo G. Panda A., Choubey A. Prediction of theS&P 500 and DJIA Stock Indices using Particle Swarm OptimizationTechnique, IEEE Congress on Evolutionary Computation, 2008.147.
Mansurov, A. K. (2008). Forecasting currency crises by fractal analysistechniques. Studies on Russian Economic Development, 19(1), 96-103.148.McCulloch W.,Walter P. A Logical Calculus of Ideas Immanent inNervous Activity (1943). Bulletin of Mathematical Biophysics 5 (4): 115–13.149. McMullin B. Computational autopoiesis: The original algorithm. Santa Fe,NM 87501, USA: Santa Fe Institute, 1997.150. McNelis, P. D.
(2005). Neural networks in finance: gaining predictive edgein the market. Elsevier Acad. Press.151.Mikhailov A.S., Loskutov A.Y. Foundations of Synergetics II. Chaos andNoise, 2nd revised and enlarged edition, Springer Series in Synergetics.Springer, Berlin — Heidelberg 1996.152.Mithchell M. Complex Systems: Network Thinking// Portland StateUniversity and Santa Fe Institute, 2006.153.Nenortaitė J. A Particle Swarm Optimization Approach In TheConstruction of Decision-Making Model// ISSN 1392 – 124X InformationTechnology and Control, 2007, Vol.36, No.1A.154.Ortega, L.
F. (2012). A Neuro-wavelet Method for the Forecasting ofFinancial Time Series. In Proceedings of the World Congress on Engineeringand Computer Science (Vol. 1).155.Panait L., Luke S. Cooperative multi-agent learning: The state of the art.Autonomous Agents and Multi-Agent Systems 11.3 (2005): 387-434/156.Parzen E. (On Estimation of a Probability Density Function and Mode.The Annals of Mathematical Statistics 33 (3): 1065, 1962.180157.Pastore, S., Ponta, L., & Cincotti, S. (2010). Heterogeneous information-based artificial stock market.
New Journal of Physics, 12(5), 053035.158. Pavelka, A., & Procházka, A. (2004). Algorithms for initialization of neuralnetwork weights. In Sbornık prıspevku 12. rocnıku konference MATLAB2004 (Vol. 2, pp. 453-459).159. Peng, L., & Liu, H. Y.
(2007, December). Decision-making and simulationin multi-agent robot system based on PSO-neural network. In Robotics andBiomimetics, 2007. ROBIO 2007. IEEE International Conference on (pp.1763-1768). IEEE.160. Poncela, P., Rodríguez, J., Sánchez-Mangas, R., & Senra, E. (2011).Forecast combination through dimension reduction techniques. InternationalJournal of Forecasting, 27(2), 224-237.161. Preis, T., Moat, H. S., & Stanley, H. E.
(2013). Quantifying tradingbehavior in financial markets using Google Trends. Scientific reports, 3.162.Pujol, J. M., Sangüesa, R., & Delgado, J. (2002, July). Extractingreputation in multi agent systems by means of social network topology. InProceedings of the first international joint conference on Autonomous agentsand multiagent systems: part 1 (pp. 467-474). ACM.163. Qi, M.
(2001). Predicting US recessions with leading indicators via neuralnetwork models. International Journal of Forecasting, 17(3), 383-401.164. Rachev, S. T., Hsu, J. S., Bagasheva, B. S., & Fabozzi, F. J. (2008).Bayesian methods in finance (Vol. 153). Wiley.
Com.165. Railsback, S. F., & Grimm, V. (2011). Agent-based and individual-basedmodeling: a practical introduction. Princeton University Press.166. Raudys, Š., & Zliobaite, I. (2006). The multi-agent system for prediction offinancial time series. In Artificial Intelligence and Soft Computing–ICAISC2006 (pp. 653-662). Springer Berlin Heidelberg.167.