Диссертация (1138079), страница 27
Текст из файла (страница 27)
On the convexity of some divergence measures based onentropy functions, IEEE Trans. Information Theory, Vol. 28, 1982.54. Burkhart, R., Langton, C., & Askenazi, M. (1996, June). The swarmsimulation system: A toolkit for building multi-agent simulations. Santa Fe:Santa Fe Institute.55. Cao, L. J., Chua, K. S., Chong, W.
K., Lee, H. P., & Gu, Q. M. (2003). Acomparison of PCA, KPCA and ICA for dimensionality reduction in supportvector machine. Neurocomputing, 55(1), 321-336.17156. Chan T. Artificial markets and intelligent agents (Doctoral dissertation,Massachusetts Institute of Technology), 2001.57. Cheng, L., Hou, Z. G., Tan, M., Lin, Y., & Zhang, W. (2010). Neuralnetwork-based adaptive leader-following control for multiagent systems withuncertainties. Neural Networks, IEEE Transactions on, 21(8), 1351-1358.58.
Cherubini, U., Della Lunga, G., Mulinacci, S., & Rossi, P. (2010). Fouriertransform methods in finance (Vol. 524). Wiley. com.59. Chiang, Y. W., Borbat, P. P., & Freed, J. H. (2005). Maximum entropy: Acomplement to Tikhonov regularization for determination of pair distancedistributions by pulsed ESR. Journal of Magnetic Resonance, 177(2), 184-196.60.
Choi Y, Duady R. Chaos and Bifurcation in 2007-09+ Financial Crisis//CNRS November 8, 2010.61. Connor, J. T., Martin, R. D., & Atlas, L. E. (1994). Recurrent neural networksand robust time series prediction. Neural Networks, IEEE Transactions on,5(2), 240-254.62.
Cont R., Bochaude J.-P. Herd Behavior and Aggregate Fluctuations InFinancial Markets// Macroeconomic Dynamics, 4, 2000, 170–196.63. Coste, C., Douady, R., & Zovko, I. (2009). The StressVaR: A New RiskConcept for Extreme Risk and Fund Allocation. Available at SSRN 1509503.64. Daniel K., Hirshleifer D., Subrahmanyam A. Investor Psychology andSecurity Market Under- and Overreactions. Journal of Finance 53 (6): 1839–1885, 1998.65.
De Bondt W.F.M., Thaler R.H. Anomalies: A Mean-Reverting Walk DownWall Street. Journal of Economic Perspectives, 3(1): 189-202, 1989.66. Delac, K., Grgic, M., & Grgic, S. (2005, July). A comparative study of PCA,ICA, and LDA. In Proc. of the 5th EURASIP Conference focused on Speechand Image Processing, Multimedia Communications and Services (pp. 99106).17267. Domingos P. Bayesian Averaging of Classifiers and the Overfitting ProblemProceeding ICML '00 Proceedings of the Seventeenth InternationalConference on Machine Learning, p.
223-230, 2000.68. Dorffner, G. (1996). Neural networks for time series processing. In NeuralNetwork World.69. Dorigo, M., Trianni, V., Şahin, E., Groß, R., Labella, T. H., Baldassarre, G.,... & Gambardella, L. M. (2004). Evolving self-organizing behaviors for aswarm-bot. Autonomous Robots, 17(2-3), 223-245.70. Draper, B. A., Baek, K., Bartlett, M. S., & Beveridge, J. R. (2003).Recognizing faces with PCA and ICA. Computer vision and imageunderstanding, 91(1), 115-137.71. Dubovikov N.N., Starchenko N.S., Dubikov M.S. Dimension of the minimalcover and fractal analysis of time series//Physica A 339 (2004) 591 – 608.72. Dueker, M.
(1997). Strengthening the Case for the Yield Curve as a Predictorof US Recessions. Federal Reserve Bank of St. Louis Review, (Mar), 41-51.73. Dunis, C., & Williams, M. (2002). ’Modelling and Trading the EUR/USDExchange Rate: Do Neural Network Models Perform Better?’. Derivativesuse, trading and regulation, 8(3), 211-239.74. Durre A., Giot P. Endorse or fight the Fed model? An international analysisof earnings, stock prices and bond yields, 2004.75. Elster, J. (1989). Nuts and bolts for the social sciences (p. 13).
Cambridge:Cambridge University Press.76. Enke, D., & Thawornwong, S. (2005). The use of data mining and neuralnetworks for forecasting stock market returns. Expert Systems withApplications, 29(4), 927-940.77. Estrella, A., & Trubin, M. (2006). The yield curve as a leading indicator:some practical issues.
Current Issues in Economics and Finance, 12(5).78. Fama E.F. Efficient Capital Markets: A Review of Theory and EmpiricalWork. The Journal of Finance, Volume 25, Issue 2, pages 383–417, May1970.17379. Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., & Uthurusamy, R. (1996).Advances in knowledge discovery and data mining.80. Ferber J. Multi-Agent Systems: An Introduction to Artificial Intelligence.Addison-Wesley, 1999.81. Filis, G., Kentzoglanakis, K., & Floros, C. (2009). VAR model training usingparticle swarm optimisation: evidence from macro-finance data.
InternationalJournal of Computational Economics and Econometrics, 1(1), 9-22.82. Friedman J. H., Tukey J. W. A Projection Pursuit Algorithm for ExploratoryData Analysis. IEEE Transactions on Computers C–23 (9): 881–890,September 1974.83. Frith C. Making up the Mind: How the Brain Creates Our Mental World.Wiley, 2007.84. Fukumizu, K., Bach, F. R., & Jordan, M. I. (2003). Kernel dimensionalityreduction for supervised learning. Advances in Neural Information ProcessingSystems, 16.85.
Fukunaga, K. (1990). Introduction to statistical pattern recognition. AccessOnline via Elsevier.86. Fyfe C. Artificial Neural Networks and Information Theory. Department ofComputing and Information Systems, The University of Paisley, 2000.87. Gan, W. S., & Ng, K. H. (1995, November). Multivariate FOREX forecastingusing artificial neural networks. In Neural Networks, 1995. Proceedings.,IEEE International Conference on (Vol. 2, pp. 1018-1022).
IEEE.88.Garnier S., Combe M., Jost C., Theraulaz G. Do Ants Need to Estimate theGeometrical Properties of Trail Bifurcations to Find an Efficient Route? ASwarm Robotics Test Bed. PLoS Comput Biol 9(3), 2013.89. Ghatge, A. R., & Halkarnikar, P. P. Ensemble Neural Network Strategy forPredicting Credit Default Evaluation. International Journal of Engineering andInnovative Technology (IJEIT), Volume 2, Issue 7, January 2013.90. Gilbert N. Agent-Based Models. University of Surrey, Guildford, 2007.17491. Glaser, M., Langer, T., & Weber, M.
(2007). On the trend recognition andforecasting ability of professional traders. Decision Analysis, 4(4), 176-193.92. Górriz, J. M., Luna, J. C. S., Puntonet, C. G., & Salmerón, M. (2005). ASurvey of Forecasting Preprocessing Techniques using RNs. Informatica(Slovenia), 29(1), 13-32.93. Górriz J.M., Puntonet C.G., Moisés Salmerón, E.W. Lang Time SeriesPrediction using ICA Algorithms//IEEE International Workshop on IntelligentData Acquisition and Advanced Computing Systems: Technology andApplications 8-10 September 2003.94.
Grossman, S. J., & Stiglitz, J. E. (1980). On the impossibility ofinformationally efficient markets. The American economic review, 70(3), 393408.95. Grothmann, R. Multi-agent market modeling based on neural networks.Faculty of Economics, University of Bremen, 2002.96. Gurney K. An Introduction to Neural Networks. London: Routledge, 1997.97. Hageman, L. A., & Young, D.
M. (2012). Applied iterative methods. DoverPublications.98. Haken G. Synergetics, an Introduction: Nonequilibrium Phase Transitions andSelf-Organization in Physics, Chemistry, and Biology", 3rd rev. enl. ed. NewYork: Springer-Verlag, 1983.99. Hassan, M. R., & Nath, B. (2005, September). Stock market forecasting usinghidden Markov model: a new approach. In Intelligent Systems Design andApplications, 2005.
ISDA'05. Proceedings. 5th International Conference on(pp. 192-196). IEEE.100.Hebb D.O. The Organization of Behavior: A Neuropsychological Theory.— Wiley, 1949.101.Henri B., Gerlach S. Does the Term Structure Predict Recessions?: theInternational Evidence. No. 1892. Centre for Economic Policy Research,1998.175102.Hillebrand E. Mean Reversion Expectations and the 1987 Stock MarketCrash: An Empirical Investigation. Finance 0501015, EconWPA, 2005.103.Hong, T., & Han, I. (2002).
Knowledge-based data mining of newsinformation on the Internet using cognitive maps and neural networks. Expertsystems with applications, 23(1), 1-8.104. Hoya, T., Hori, G., Bakardjian, H., Nishimura, T., Suzuki, T., Miyawaki,Y., ... & Cao, J. (2003, January). Classification of single trial EEG signals by acombined principal+ independent component analysis and probabilistic neuralnetwork approach. In International Symposium on Independent ComponentAnalysis and Blind Signal Separation (pp.