Диссертация (1136684), страница 24
Текст из файла (страница 24)
418 (6894). P. 171–174.124. Kirkup B., Riley M. Antibiotic-mediated antagonism leads to abacterial game of rock-paper-scissors in vivo // Nature, 2004. Vol. 428(6981). P. 412–414.125. Lankau R.A., Wheeler E., Bennett A.E., Strauss S.Y. Plant-soilfeedbacks contribute to an intransitive competitive network thatpromotes both genetic and species diversity // Journal of Ecology.2011. Vol. 99 (1). P. 176–185.146126. Lazareva O.F., Smirnova A.A., Bagozkaja M.S., Zorina Z.A.,Rayevsky V.V., Wasserman E.A. Transitive responding in hoodedcrows requires linearly ordered stimuli // Journal of the ExperimentalAnalysis of Behavior.
2004. Vol. 82 (1). P. 1–19.127. Linares P. Are inconsistent decisions better? An experiment withpairwise comparisons // European Journal of Operational Research.2009. Vol. 193 (2). P. 492–498.128. Luce R.D., Raiffa H. Games and Decisions: Introduction and CriticalSurvey [Reprint]. Originally published: N.Y.: Wiley, 1957. 509 p.129. MaClean E.L., Merritt D.J., Brannon E.M. Social complexity predictstransitive reasoning in prosimian primates //Animal Behavior.
2008.Vol. 76 (2). P. 479–486.130. Maclver D.R. Nontransitive dice are unsurprising [Эл. рес.] // URL:http://www.drmaciver.com/2013/03/nontransitive-dice-areunsurprising/ (дата обращения: 14.10.2014)131. Makowski M. Transitivity vs. Intransitivity in decision makingprocess (An example in quantum game theory) // Physics Letters A.2009. Vol.
373 (25). P. 2125–2130.132. Markovits H., Dumas C., Malfait N. Understanding transitivity of aspatial relationship: A developmental analysis // Journal ofExperimental Child Psychology. 1995. Vol. 59 (1). P. 124–141.133. Markovits H., Schleifer M., Fortier L. Development of elementarydeductive reasoning in young children // Developmental Psychology.1989.
Vol. 25 (5). P. 787–793.134. May K. Intransitivity, Utility and the Aggregation of PreferencePatterns // Econometrica. 1954. Vol. 22 (1). P. 1–13.135. Meigs A. Multiple gender ideologies and statuses // In: P.R. Sanday &R.G. Goodenough (Eds.). Beyond the Second Sex: New Directions in147the Anthropology of Gender. Philadelphia: University of PennsylvaniaPress, 1999. pp. 101–112.136. Mellers B.A., Weiss R., Birnbaum M.H. Violations of dominance inpricing judgments // Journal of Risk and Uncertainty. 1992. Vol. 5 (1).P.
73–90.137. Minsky M. Some methods of artificial intelligence and heuristicprogramming // Proceedings of the symposium on mechanization ofthought process. L.: HMSO, 1959. P. 3–27.138. Mongin P. Does Optimization Imply Rationality? // Synthese. 2000.Vol. 124 (1-2). P. 73–111.139. Mou Y., Province J.M., Luo Y. Can infants make transitivepreferences // Cognitive psychology. 2014.
Vol. 68. P. 98–112.140. Mutafchieva M., Kokinov B. Can Language be Replaced? PhysicalRepresentations of Relations Instead of Language Labels in RelationalMapping: Do They Help Young Children? // Proceedings of theEuropean Cognitive Science Conference, 2007. P. 509–514.141. Overton W. Competence and procedures: Constraints on thedevelopment of logical reasoning// Overton W.
(ed.). Reasoning,necessity, and logic: Developmental perspectives. Hillsdale, N.J.,1990. P. 1–32.142. Overton W., Byrnes J., O'Brien D. Developmental and individualdifferences in conditional reasoning: The role of contradiction trainingand cognitive style // Developmental Psychology. 1985. Vol. 21 (4).P. 692–701.143. Overton W., Ward S., Noveck L., Black J., O'Brien D. Form andcontent in the development of deductive reasoning // DevelopmentalPsychology.
1987. Vol. 23 (1). P. 22–30.144. Pahikkala T., Waegeman W., Tsivtsivadze E., Baets B.D., SalakoskiT. From ranking to intransitive preference learning: Rock-Paper148Scissors and beyond // Proceedings of the ECML/PKDD-Workshopon Preference Learning (PL-09), 2009.
P. 84–100.145. Paz-y-Miсo C.G., Bond A.B., Kamil A.C., Balda R.P. Pinyon jays usetransitive inference to predict social dominance // Nature. 2004. Vol.430 (7001). P. 778–781.146. Pears R., Bryant P.E. Transitive inferences by young children aboutspatial position // British Journal of Psychology. 1990. Vol. 81 (4). P.497–510.147. Poddiakov A.N., Valsiner J. Intransitivity cycles and theirtransformations: how dynamically adapting systems function //Mathematical models for research on cultural dynamics: qualitativemathematics for the social sciences / Eds J.
Valsiner, L. Rudolph.London: Routledge, 2012. P. 297–347.148. Rabinowicz W. Money pump with foresight // Value and Choice:Some Common Themes in Decision Theory and Moral Philosophy.Lund, Switzerland: Lund Universitetstrycheriet, 2000. P. 201–234.149. Regenwetter M., Dana J., Davis-Stober C.P. Transitivity ofPreferences // Psychological Review. 2011. Vol. 118 (1).
Р. 42–56.150. Riechard D. Paired-Comparisons Intransitivity Related to Age ofSubjects // Educational and Psychological Measurement, 1990. Vol.50 (1). P. 105-110.151. Roberts T.S. A ham sandwich is better than nothing: Some thoughtsabout transitivity // Australian senior mathematics journal. 2004. Vol.18 (2).
P. 60–64.152. Rubinstein А. Similarity and decision-making under risk: Is thereutility theory resolution to the Allais paradox? // Journal of EconomicTheory, 1988. Vol. 46 (1). P. 145–153.153. Seip K.L., Wenstøp F. A Primer on Environonmental DecisionMaking: An Integrative Quantitative Approach. N.Y.: Springer, 2006.149154. Semmann D., Krambeck H.-J., Milinski M. Volunteering leads torock-paper-scissors dynamics in a public goods game // Nature.
2003.Vol. 425 (6956). P. 390–393.155. Shafir S. Intransitivity of preferences in honey bees: support for”comparative” evaluation of foraging options // Animal Behaviour,1994. Vol. 48 (1). P. 55–67.156. Sinervo B., Lively C. The rock-paper-scissors game and the evolutionof alternative male strategies // Nature. 1996. Vol. 380 (6571). P. 240–243.157. Skinner G.K., Freeman G.H. Soccer matches as experiments: howoften does the 'best' team win? // Journal of Applied Statistics. 2009.Vol. 36 (10).
P. 1087–1095.158. Smedslund J. Development of concrete transitivity of length inchildren // Child Development. 1963. Vol. 34 (2). P. 389–405.159. Temkin L.S. A continuum argument for intransitivity // Philosophyand public affairs. 1996. Vol. 25 (3). P. 175–210.160. ThorntonB.Nontransitivedice[Эл.рес.]//URL:http://www.dehn.wustl.edu/~blake/circles/talks/2009-Sept13Thornton-Nontransitive.pdf (дата обращения: 01.08.2014).161. Tversky A. Intransitivity of Preferences // Psychological Review,1969.Vol. 76 (1). P.
31–48.162. Tversky A., Kahneman D. Judgment under uncertainty: Heuristics andbiases // Science. 1974. Vol. 185 (4157). P. 1124–1131.163. Tversky A., Kahneman D. Rational choice and framing of decisions //Journal of business. 1986. Vol. 59 (4). P. 251–278.164. Waite T. A. Intransitive preferences in hording gray jays // BehavioralEcology and Sociobiology.
2001. Vol. 50 (2). P. 116–121.165. Weinstein A. Individual Preference Intransitivity // SouthernEconomic Journal. 1968. Vol. 34 (3). P. 335–343.150ПриложениеТаблица 9. Распределение полученных ответов в подгруппах попараметрам пола, возраста, уровня образования и направленияобученияЗадача о…(подгруппа)Карандашах(Э1)Карандашах(К1)Спортсменах(Э2)Параметрмж16-1818-25Возраст25-3535-45н/ссреднееУровеньобразованиян/ввысшееГуманитарноеНаправлениеТехническоеобученияМатематическоемполж16-1818-25Возраст25-3535-45н/ссреднееУровеньобразованиян/ввысшееГуманитарноеТехническоеНаправлениеобученияМатематическоеОбщеобразоват-ноеМполЖ16-1818-25Возраст25-3535-45н/ссреднееУровеньобразованиян/ввысшееГуманитарноеНаправлениеТехническоеобученияМатематическоепол151+93065101382829618330168681860770068851Абсолютные показатели ответов–?~нВсего400114211182000231121310006000121000110013110053011135110910021100002002011003110002030011100020500003001010010200006003112004111001090001022000106030152000250301510008010001100014030132000107030180000500001Продолжение таблицы 9Спортсменах(К2)Игральныхкостях (Э3)Игральныхкостях (К3)Общеобразоват-ноемполж16-1818-25Возраст25-3535-45н/ссреднееУровеньобразованиян/ввысшееГуманитарноеНаправлениеТехническоеобученияМатематическоемполж16-1818-25Возраст25-3535-45н/ссреднееУровеньобразованиян/ввысшееГуманитарноеТехническоеНаправлениеобученияМатематическоеОбщеобразоват-ноемПолж16-1818-25Возраст25-3535-45н/ссреднееУровеньобразованиян/ввысшееГуманитарноеТехническоеНаправлениеобученияМатематическоеОбщеобразоват-ное08111081021071531520520003431304204200033411010000000000005425110243800100000000000000000000000000010100010000001251105121351010112001010200130400004030001717001061800000101000011000000000000000000000000000000Примечание: «+» – правильный ответ, «–» – неправильный «транзитивный» ответ,«?» – случайно выбранный вариант ответа, «~» – другой неправильный ответ, «н» –неопределенный ответ участника исследования.152191301291121181831129314311211714132714212252210717211.