Том 1 (1134473), страница 81

Файл №1134473 Том 1 (Я.И. Герасимов - Курс физической химии) 81 страницаТом 1 (1134473) страница 812019-05-12СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 81)

Интерметаллические соединения обычно значительно тверже и гораздо более хрупки, чем исходные металлы. Соединения двух пластичных металлов, как, например, ЫаНйв, МйтСц, МйвЗп, МнвРЬ, АцтСц и др., настолько хрупки, что легко растираются в порошок. Хрупкость соединений, образованных двумя пластичными компанентамя, в данном случае металлами, Объясняется тем, чта пространственные решшки соединений гораздо сложнее решеток компонентов. Плоскости скольженяя в подобных решетках либо не могут образоваться, либо появляются лишь прн значительных напряжениях.

Прп наличии подобной решетки кристаллические вещества не способны поддаваться пластической деформацнп. б 7. Дальгоииды и бедголлиды 411 Электропроводность интерметаллических соединений обычно меньше элеь— тропроводности компонентов. Если электрапроводность одного компонента высока, а другого ннзна, то соединение обладает промежутпчной электропроводиостью. В качестве првмера диаграммы состояния системы, образующей ннтерметаллическое соединение, рассмотрим диаграмму состояния системы магний-- серебро (рнс.

Х!Ч, 10). Этн металлы образуют два химических соединения Майа и Мй»Аа. Первое из них плавится конгруентио, второе — инконгруентно. Сопоставим кривую плавкоста системы Мй — Аа с кривой состав — электропровод- ность для твердых фаз при 25 'С (рис. Х1У, !О). Уже небольшие добавки серебра к магнию, а также магния к серебру вызывают резкое понижение электропровод- ности, что видно по крутому падению кривой 2 в области твердых растворов со структурами а и М Химическому соединению МйАа отвечает максимум иа кривой плавкостн и сингулярная точка, в которой пересекаются две ветви кривой 2. Это служит подтверзкденнем, что МйАй действительно индивидуальное соединение. При добавках к нему магния илн серебра электропроводность образующихся твердых растворов падает так же сильно, как н при добавках и чистым магнию нли серебру. Второй сингулярной точки, отвечающей второму химическому соединению Маада, на крнвпй 2 нет.

Но зато на кривой 3, описывающей зависимость температурного коэффициента электропроводности от состава, имеются две синг)- лярные точки, отвечающие каждому из хнмвческих соединеинй. В области твердых растворов и, З, В Ь зависимости состав — свойство описыааютсн кривыми линнями.

В точках перехода от аднофазной структуры к двухфазной на обеих кривых видны изломы, указывающие на появление новой, не связанной с предыдущей зависимости свойств от состава. Во всех двухфазных областях Р+сь, т+!З, Ь+т крнвые 2 и 8 прямолинейны, т. е. в этих областях мы имеем две фазы постоянного состава, механически смешанные а различных соотношениях. Для изучения сплавов и их соединений широко применяется метод иссле. дованвя микроструктуры отполированной и цротравленной поверхности ь:еталла в отраженном свете.

Этот метод введен в практику горным инженерст: Н. П. Аносовым в 1831 году. Он позволяет выяснять, как зависит структура затвердевшего сплава от состава и от резкима охлаждения, изучать связь между структурой сплава и его свойствамн и сознательно искать пути получения сплавов с желательнымн свойствами. Э 7. Дальтониды и бертоллиды Образующиеся в сплавах химические соединения, подчиняющиеся стехиометрическим законам Дальтона, называются дальтонидал«и. Термин «дальтониды» можно распространить как на все химические соединения постоянного стехиометрического состава, так и на твердые растворы, для которых имеется сингулярная точка, отвечающая при различных условиях одному н тому же составу. Физико-химический анализ различных систем показывает, что во многих случаях максимумам на кривой плавкости не отвечают сингулярные точки на кривых, выражающих другие свойства системы.

Так, например, на диаграмме состояния таллнй — висмут (рис. (Х1Ъ', 11), несмотря на наличие двух явно выраженных максимумов на кривой плавкости, иа кривых состав — свойство 412 Гл. ХГт'. Двихкомпонентные системы с ограниненной растворимостею 0 ей 40 б0 б0 /00 ббсмиб сиромн. уо В! не имеется ни одной сингулярной точки. Максимумы на кривой плавкости в подобных случаях являются иррациональными, т.

е. не отвечают какому-либо простому стехиометрическому отношению компонентов и смещаются при изменении параметров (например, при изменении давления или концентрации третьего компонента). Таким образом, непрерывные ряды твердых раство- ров, образующих Р- и Т1 фазы, стоят на границе между химическими соеВ1 динениями и растворами. Такие твердые растворы у уподобляются химическому соединению, потому что их кристаллы обладают своей особой структурой, отличной от структур кристаллов исходных ком, 'н',." понентов; с растворами же их сближает неопределенность состава. Курнаков назвал подобные вещества переменного состава бертоллидами в честь Бертолле, который М" считал, что химические М, соединения не обязательу но должны удовлетворять простым стехиометрическим отношениям, и в общем случае являются системами переменного состава. Соединения же постоянного состава представляют собой частный, Рис. Х1т', 11.

Диаграмма состоиаии си,'емы' галлиа аи, ут; хотя и весьма распростра нтн~ыиплеэкостнтнаыплыекстеленнаенснныйелучай ЭТИХ СИ температурный коэффициент электрического со- СТЕМ, протинленнн; Š— электропронэиностн ири Ы'С. Курнаков предложил следующее объяснение образования бертоллидов. В случае иррационального максимума кривой плавкости фазу т 1рис.

Х1Ъ', 12) можно рассматривать как твердый раствор двух определенных химических соединений А В„и АрВ с предполагаемыми точками плавления 1, и г'„но в чистом виде каждое из этих соединений неустойчиво. Фигуративные точки, отвечающие этим неустойчивым соединениям, лежат в 6 8*. Процесса! упорядочения з твердых растворах ' 413 областях более устойчивых двухфазных равновесных систем из твердых растворов а+у и Т+Р. В пределах же концентраций, охватываемых областью твердых растворов Т, химические соединения А В„и АрВ» совместно образуют устойчивую кристаллическую решетку.

Максимуму на кривой плавления таким образом отвечает твердая азеотропная смесь этих соединений. 5 В». Процессы упорядочения в твердых растворах Выше (стр. 365) уже отмечалось, что твердая фаза, после того нак она образовалась путем кристаллизация расплава, мажет претерпевать дальнейшие изменения. В тех случаях, ногда выделившиеся кристаллы индивидуального химического соединения представляют собой неустойчивую модификацию, дальнейшие превраще- »,» д лйхт л иия нмеют место после достаточной — ь'осла!у выдержки при той же температуре. Если же полученные кристаллы термодинамически устойчивы, то даль- Рис. Х1Ч,!2.

Схема, поясняющаяобиейшис превращения возмохгны лишь разование бертоллидов в случаеиррав результате пззаенення условий су. ционального максимума иа кривой гцествоваиия твердой фазы, например плавкости. при дальнейшем понижении температуры или при изменении давления. Аналогичная картина наблюдается и в случае твердых растворов. При быстром охлаждении расплавов получаются термодинамически неустойчивые образонания неоднородной структуры, которые переходят в термодинамически устойчивую однородную форму после достаточной выдержки при той жетемпературе.

Но в твердых растворах возможен н другой процесс дальнейшего упорядочения структуры. Вполне однородный в статистическом смысле и термодинамически устойчивый твердый раствор иногда способен при дальнейшем охлаждении изменить свою -кристаллическую структуру, образуя уже иную, но опять однофазную однородную систему. Пример подобного процесса встречается при охлаждении сплавов меди и платины различных составов (рис.

Х1Ъ', !3). При достаточно медленном охлаждении расплавов Р1 — Сп различного состава получаются вполне однородные твердые растворы. Но в процессе охлаждения затвердевших систем, близних по составу к соединениям Р1Сп и Р1Спэ, наблюдается дальнейшее лвменение этих структур. В системе состава Р1Сп, при температуре 645 'С из кристаллов с беспорядочно расположенными атомами платины и меди образуются кристаллы индивидуального соединения Р1Сп,.

Таким образом, наблюдается переход от статистической однородности, когда по узлам геометрически правильной решетки атомы распределены в каотическом беспорядке, к однородности кристалла индивндуального химического соединения, т. е, к геометрическн правильной решетке, в узлах которой правильно чередуются образующие ее ртомы. Это превращение протекает при постоянной температуре и сопровождается тепловым эффектом, подобно фазовому переходу первого рода. Если общий состав твердого раствора близок к составу Р1Снз, но не совпадает с ним, то кристаллическая решетка тоже перестраивается, но эта перестройка протекает уже в некотором интервале темпера- 414 Гл, Х!)т, Деухкомиоиентные сисгемьт с оероииченнай растворимостью тур. Кривые ай и Ьс показывают температуры начала и конца превращения твердых растворов различного состава, в которых таким образом получается лишь частично упорядоченная структура.

При охлаждении твердых растворов состава Р1Сптакже происходит перестройка кристаллической структуры, начиная с температуры 812 'С. Но при этом составе и при близких к нему перестройка протекает прн меняющейся температуре и не сопровож!7аре дается тепловым эффектом. Поэтому ее следует считать фазовым перехоЮЗй дом второго рода (см. стр. 143). Верхняя граница температурных интервалов превратдення обозначена сплошной кривой е), а нижняя граница — пуктирной линией йй.

При физико-химическом анализе твердых сплавов платины п о меди составам Р1Сп и Р1Сп, атеечают ясно выраженные сингулярные точки на кривых зависимости тсфмозлектродвижуще(е силы от сора!у става (рпс. Х!17, 13,6) и удельной электропроводности от состава (рис. 1Х'ч',1З,е). Прн температуах, превышающнх соответственно 12 я 646 'С, зти сингулярнье точки исчезают. Возникающие в процессе ох.

Характеристики

Тип файла
DJVU-файл
Размер
6,04 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6455
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее