Ответы на вопросы теормина (1133529), страница 4
Текст из файла (страница 4)
 ÷åì åå äîñòîèíñòâà è íåäîñòàòêè?ßâíàÿ ñõåìà (σ = 0) äëÿ óðàâíåíèÿ òåïëîïðîâîäíîñòèut = uxx + f :τ ss− 2yns + yn+1+ τ φsnyns+1 = yns + 2 yn−1h(161)1. Äîñòîèíñòâà: ïðîñòîòà âû÷èñëåíèé (êàæäûéñëåäóþùèé ñëîé (s + 1) íàõîäèòñÿ íåïîñðåäñòâåííî èçïðåäûäóùåãî ñëîÿ (s) ïðè ïîìîùè óðàâíåíèÿ (161)).2.Íåäîñòàòêè: ñõåìà óñòîé÷èâà óñëîâíî. Óñòîé÷èâà òîëüêî ïðèÐèñ. 6: Explicit schemeτ<(τ <45h22a2h22â ñëó÷àå óðàâíåíèÿ ut = a2 uxx + f )Ïðèâåäèòå ïðèìåð íåÿâíîé ðàçíîñòíîé ñõåìû.  ÷åì åå äîñòîèíñòâà è íåäîñòàòêè?Íåÿâíàÿ ñõåìà : σ 6= 0Ðèñ. 7: Pure implicit scheme×èñòî íåÿâíàÿ ñõåìà (σ = 1) äëÿ óðàâíåíèÿ òåïëîïðîâîäíîñòè ut = uxx + f :1 s+1211 s+11 sss+1y+y+yy+φ−=−nnh2 n−1h2 τh2 n+1τ n(162)191.
Äîñòîèíñòâà: ñõåìà áåçóñëîâíî óñòîé÷èâà.2. Íåäîñòàòêè: áîëåå ñëîæíàÿ ïðîöåäóðà âû÷èñëåíèÿ. Íà êàæäîì ñëîå ñõåìà (162) ïðåäñòàâëÿåò ñîáîé ñèñòåìó ëèíåéíûõ óðàâíåíèé äëÿ îïðåäåëåíèÿ âåëè÷èí yns+1 , ïðàâûå ÷àñòè ýòèõ óðàâíåíèé èçâåñòíû, ïîñêîëüêó ñîäåðæàò çíà÷åíèÿ ðåøåíèÿ ñ ïðåäûäóùåãî ñëîÿ. Ìàòðèöà ëèíåéíîé ñèñòåìû òðåõäèàãîíàëüíà, è ðåøåíèå ìîæíî âû÷èñëèòü àëãåáðàè÷åñêîé ïðîãîíêîé.46Íàïèøèòå óñëîâèÿ óñòîé÷èâîñòè ÿâíîé ðàçíîñòíîé ñõåìû.ßâíàÿ ñõåìà äëÿ óðàâíåíèÿut = a2 uxx + fóñòîé÷èâà ïðèτ<47h22a2(163)Ïðèâåäèòå ïðèìåð áåçóñëîâíî óñòîé÷èâîé ñõåìû.×èñòî íåÿâíàÿ ñõåìà ÿâëÿåòñÿ áåçóñëîâíî óñòîé÷èâîé.48Ïðèâåäèòå ïðèìåð ýêîíîìè÷íîé ðàçíîñòíîé ñõåìû.Ýêîíîìè÷íîé ðàçíîñòíîé ñõåìîé íàçûâàåòñÿ ñõåìà, ïðèìåíèìàÿ äëÿ ðåøåíèÿ ìíîãîìåðíûõ çàäà÷ è ñî÷åòàþùàÿ â ñåáå äîñòîèíñòâà ÿâíûõ è íåÿâíûõ ñõåì.Ýêîíîìè÷íàÿ ðàçíîñòíàÿ ñõåìà áåçóñëîâíî óñòîé÷èâà è òðåáóåò ïðè ïåðåõîäå ñî ñëîÿ íà ñëîé ÷èñëà àðèôìåòè÷åñêèõ îïåðàöèé,ïðîïîðöèîíàëüíîãî ÷èñëó óçëîâ.Ïðèìåð: Ñõåìà ïåðåìåííûõ íàïðàâëåíèé (ñì.
äàëåå)49Íàïèøèòå ñõåìó ïåðåìåííûõ íàïðàâëåíèé.∂u ∂t = Lu + f (x, t) , (x, t) ∈ QTu(x, 0) = u0 (x) , x ∈ D̄u(x, t) = µ(x) , x ∈ Γ , t ∈ (0, T ](164)(165)(166)ãäåLu ≡ ∆u ≡ L1 u + L2 u =∂2u ∂2u+∂x21 ∂x22(167)D̄ ≡ {0 6 x1 6 l1 , 0 6 x2 6 l2 }(168)QT = D × (0, T ] , x = (x1 , x2 )(169)Ñåòêà:ω̄h1 h2 = ωh1 h2 + γh1 h2 = {(xn1 , xn2 ) ∈ D̄ ; 0 6 nα 6 Nα , α = 1, 2}(171)Lu → Λy = Λ1 y + Λ2 yΛα y = yx̄α xα , α = 1, 2 , x̄α =t = ts+1/2 = ts + 0.5τȳn1 n2 = yns+1/2; ŷn1 n2 = yns+11 n21 n2(170)xnαα +1(172)(173)(174)(175)20y s+1/2 − y s= Λ1 y s+1/2 + Λ2 y s + φs0.5τs+1 − y s+1/2y= Λ1 y s+1/2 + Λ2 y s+1 + φs x ∈ ωh0.5τy(x, 0) = u0 (x) , x ∈ ω̄hy s+1 = µ , n2 = 0 , n2 = N2 s+1/2y= µ , n1 = 0 , n1 = N1Èç (176)Èç (177)(176)(177)(178)(179)(180)22ȳ − Λ1 ȳ = F , F = y + Λ2 y + φττ(181)22ŷ − Λ2 ŷ = F̄ , F̄ = ȳ + Λ1 ȳ + φττ(182)Ñëåäîâàòåëüíî:1ȳn −1 − 2h21 11ŷn −1 − 2h22 2111+ȳn1 + 2 ȳn1 +1 = −Fn1h21 τh1(183)n1 = 1, 2, ..., N1 − 1(184)ȳn1 = µn1 ; n1 = 0 , n1 = N1(185)111+ŷn2 + 2 ŷn2 +1 = −F̄n22h2 τh2(186)n2 = 1, 2, ..., N21 − 1(187)ŷn2 = µn2 ; n2 = 0 , n2 = N2(188)ãäåxn = (n1 , h1 , n2 , h2 ) , F = Fn1 n2 , y = yn1 n250Íàïèøèòå ëîêàëüíî-îäíîìåðíóþ ñõåìó.
×òî òàêîå ìåòîä ôàêòîðèçàöèè?Ëîêàëüíî-îäíîìåðíûé ìåòîä - óíèâåðñàëüíûé ìåòîä, ïðèãîäíûé äëÿ ðåøåíèÿ óðàâíåíèÿ òåïëîïðîâîäíîñòè ñ ïåðåìåííûìè è äàæå ðàçðûâíûìè êîýôôèöèåíòàìè â ïðîèçâîëüíîé îáëàñòè Gëþáîãî ÷èñëà èçìåðåíèé.  îñíîâå åãî ëåæèò ïîíÿòèå ñóììàðíîé àïïðîêñèìàöèè ñõåìû. Ðåøåíèåðàçíîñòíîé çàäà÷è äëÿ ôàêòîðèçîâàííîé ñõåìû ñâîäèòñÿ ê ïîñëåäîâàòåëüíîìó ðåøåíèþ ðàçíîñòíûõ çàäà÷ áîëåå ïðîñòîé ñòðóêòóðû. Ôàêòîðèçîâàííûìè íàçûâàþòñÿ ñõåìû ñ ôàêòîðèçîâàííûì îïåðàòîðîì. Ôàêòîðèçîâàííûé îïåðàòîð - îïåðàòîð, ïðåäñòàâèìûé â âèäå ïðîèçâåäåíèÿáîëåå ïðîñòûõ (îáû÷íî îäíîìåðíûõ) îïåðàòîðîâ.Ðàññìîòðèì óðàâíåíèå òåïëîïðîâîäíîñòè:∂u(189) ∂t = Lu + f (x, t)u|Γ = µ(x, t)(190)u(x, 0) = u (x)(191)0ãäå x = (x1 , x2 , ..., xp ) ∈ G ⊂ Rp , t ∈ [0, t0 ], Γ - ãðàíèöà G,∂∂uLα u =kα (x, t)∂xα∂xαÎáëàñòü G:21(192)1. ïåðåñå÷åíèå îáëàñòè G ëþáîé ïðÿìîé Cα ,ïàðàëëåëüíîé îñè êîîðäèíàò Oxα , ìîæåò ñîñòîÿòüëèøü èç êîíå÷íîãî ÷èñëà èíòåðâàëîâ.2.
âîçìîæíî ïîñòðîåíèå â îáëàñòè Ḡ ñâÿçíîé ñåòêè ω̄h , ñ øàãàìè hα , α = 1, 2, ..., pÏðèáëèæåííîå ðåøåíèå y s+1 ïðè t = ts+1 áóäåì èñêàòü â âèäå∂y(α)= Lα y(α) + fα ts 6 t 6 ts+1∂tpXfα = f α = 1, 2, ..., p(193)(194)α=1s+1sy(α)= y(α−1)α = 2, ..., ps= ysy(1)(195)(196)ñ ó÷åòîì åñòåñòâåííûõ ãðàíè÷íûõ óñëîâèé.y+1Ðåøåíèåì ýòîé çàäà÷è áóäåò y s+1 = y(p). Çíàÿ y 0 = u0 (x) íàõîäèì y s+1 .Êàæäîå èç óðàâíåíèé íîìåðà α çàìåíèì äâóõñëîéíîé øåñòèòî÷å÷íîé ñõåìîé ñ âåñîì σα .Ó÷èòûâàÿ, ÷òîs+1sy(α)− y(α)∂y(α)≈, L α ∼ Λ α , f α ∼ φα∂tτïîëó÷èìs+1s− y(α)y(α)s+1s= Λα [σ(α) y(α)+ (1 − σα )y(α)] + φα(197)τãäå(198)Λα y = (aα (x, t∗ )yx̂α )xα , ψα = ψα (x, t∗ )t∗ - ëþáîå çíà÷åíèå t èç ts 6 t 6 ts+1 . aα îïðåäåëÿåòñÿ èç (217).
Ïðàâûå ÷àñòè ψα âûáèðàþòñÿpPψi = f (x, t∗ ) + O(|h|2 + τ ), íàïðèìåð ψ1 = · · · = ψp−1 = 0, ψp = f . Ó÷èòûâàÿ, ÷òîòàê, ÷òîi=1s = y s+1 ïîëó÷èì ïîñëåäîâàòåëüíîñòüy(α)(α−1)ëîêàëüíî-îäíîìåðíûõ ñõåìy(α) − y(α−1)= Λα [σ(α) y(α) + (1 − σα )y(α−1) ] + φατ(199)Êðàåâûå óñëîâèÿ äëÿ y(α)y(α) = µ(x, t∗ ) , x ∈ γαhy(x, 0) = u0 (x)51(200)(201)Äàéòå îïðåäåëåíèå îäíîðîäíîé ðàçíîñòíîé ñõåìû.Ïîä îäíîðîäíûìè ðàçíîñòíûìè ñõåìàìè ïîíèìàþòñÿ òàêèå ñõåìû, âèä êîòîðûõ íå çàâèñèò íè îòâûáîðà êîíêðåòíîé çàäà÷è èç äàííîãî êëàññà çàäà÷, íè îò âûáîðà ðàçíîñòíîé ñåòêè.52×òî òàêîå êîíñåðâàòèâíàÿ ðàçíîñòíàÿ ñõåìà.
Ïðèâåäèòå ïðèìåð êîíñåðâàòèâíîé è íåêîíñåðâàòèâíîé ðàçíîñòíîé ñõåìû.Êîíñåðâàòèâíûìè (äèâåðãíåíòíûìè)ñåòêå çàêîíû ñîõðàíåíèÿ.íàçûâàþòñÿ ðàçíîñòíûå ñõåìû, êîòîðûå âûðàæàþò íàÏðèìåðû:1.Êîíñåðâàòèâíàÿ:ìåòîä áàëàíñà (ñì. íèæå)222.Íåêîíñåðâàòèâíàÿ:Ðàññìîòðèì çàäà÷ó:∂u∂k= 0 x ∈ [0, 1]∂x ∂xu(0) = 1u(1) = 0(202)(203)(204)(205)ãäå êîýôôèöèåíò k - ðàçðûâíûé:(1 , x ∈ [0, 12 ]k=2 , x ∈ ( 12 , 1](206)Ñîñòàâèì ðàçíîñòíóþ ñõåìó äëÿ óðàâíåíèÿ kuxx + kx ux = 0knyn+1 − 2yn + yn−1 kn+1 − kn−1 yn+1 − yn−1+=0h22h2hÐàçîáüåì èíòåðâàë íà 10 òî÷åê è áóäåì èñêàòü y â âèäå(1 − αxn xn ∈ [0, 21 )yn =β(1 − xn ) x ∈ ( 12 , 1)(207)(208)Äëÿ n = 4, 5, 6 è 5, 6, 7 ïîëó÷èì:y6 − 2y5 + (y5 + αh)y6 − (y5 + αh)+1=02h(2h)2(y6 − βh) − 2y6 + y5(y6 − βh) − y52+1=02h(2h)2(209)(210)Îòêóäà ñëåäóåò ÷òî(y6 − y5 )5 = −3αh(211)(y6 − y5 )(−5) = 7βh(212)15β.7Äàëåå ó÷èòûâàÿ ÷òî â ñðåäíåé òî÷êåÒî åñòü α =α11− =β 1−22Ïîëó÷àåì ÷òî β =1422 .(213)Ñëåäîâàòåëüíî: 17u=222(214)Ýòî ÷èñëåííûé ðåçóëüòàò.
Ïðè÷åì îí íå çàâèñèò îò h. Ðåøàÿ çàäà÷ó òî÷íî (ðåøåíèå èùåìâ òîì æå âèäå) è ó÷èòûâàÿ ÷òî â òî÷êàõ x = 21 − 0 è x = 21 + 0 ïîòîê q = kux äîëæåí11áûòü îäèíàêîâûì ïîëó÷àåì ÷òî u( 2 ) = 3 .Òàêèì îáðàçîì ðàññìîòðåííàÿ ñõåìà ðàñõîäèòñÿ. Ðåøåíèå ũ(x) (ðåøåíèå , ê êîòîðîìó ñòðåìèòüñÿ ÷èñëåííîå ðåøåíèå, ïîëó÷åííîå ïðè ïîìîùè äàííîé ñõåìû, ïðè h → 0) íå ñîâïàäàåò ñòî÷íûì). Ìîæíî ïîêàçàòü, ÷òî ũ(x) íàðóøàåò áàëàíñ (çàêîí ñîõðàíåíèÿ) òåïëà ïðè x = 1/2Ñëåäîâàòåëüíî ñõåìà ÿâëÿåòñÿ íåêîíñåðâàòèâíîé.2353Êàêèå ìåòîäû ïîñòðîåíèÿ êîíñåðâàòèâíûõ ðàçíîñòíûõ ñõåì âàì èçâåñòíû?1. Èíòåãðî-èíòåðïîëÿöèîííûé (ìåòîä áàëàíñà)2.
Ìåòîä êîíå÷íûõ ýëåìåíòîâ54 ÷åì ñîñòîèò èíòåãðî-èíòåðïîëÿöèîííûé ìåòîä (ìåòîä áàëàíñà)?Ìåòîä áàëàíñà ïîçâîëÿåò ïîëó÷àòü ñõåìû, êîýôôèöèåíòû êîòîðûõ âî âñåõ óçëàõ ñåòêè âû÷èñëÿþòñÿ ïî îäíèì è òåì æå ôîðìóëàì êàê ñðåäíèå çíà÷åíèÿ êîýôôèöèåíòîâ äèôôåðåíöèàëüíîãîóðàâíåíèÿ â îêðåñòíîñòè óçëà ñåòêè.Ðàññìîòðèì ñòàöèîíàðíîå óðàâíåíèå òåïëîïðîâîäíîñòèdudk(x)− q(x)u = f (x)(215)dxdx0 < x < 1, k > 0, q > 0.
q(x)u - ìîùíîñòü ñòîêîâ òåïëà.Ââåäåì ðàâíîìåðíóþ ñåòêó ω̄h = {xi = nh , n = 0, 1, ..., N }.Ðàññìàòðèâàåì áàëàíñ òåïëà ïðè xi−1/2 6 x 6 xi+1/2 . Ñ÷èòàÿ u = const = ui ïðè xi−1/2 6 x 6xi+1/2 , W = const = Wi−1/2 ïðè xi−1 6 x 6 xi (W = −k(x) dudx - ïîòîê òåïëà), ïîëó÷èì ðàçíîñòíóþñõåìó äëÿ óðàâíåíèÿ áàëàíñà (êîíñåðâàòèâíóþ):1 ai+1 (yi+1 − yi ) ai (yi − yi−1 )−− Qi yi = −ψi(216)hhhãäå1Rxiai =1hQi =(217)dxk(x)xi−1xi+1/21hZq(x)dx(218)f (x)dx(219)xi−1/2xi+1/21ψi =hZxi−1/2(220)55×òî òàêîå ìåòîä êîíå÷íûõ ýëåìåíòîâ?Ìåòîä êîíå÷íûõ ýëåìåíòîâ çàêëþ÷àåòñÿ â ïîèñêå ðåøåíèÿ ìåòîäîì ðàçëîæåíèÿ èñêîìîé ôóíêöèè ïî ñèñòåìå ôóíêöèé, êàæäàÿ èç êîòîðûõ îïðåäåëåíà â ñâîåé ïîäîáëàñòè, âíå êîòîðîé îíàòîæäåñòâåííî ðàâíÿåòñÿ íóëþ.
Òàêèì îáðàçîì çàäà÷à ñâîäèòñÿ ê îòûñêàíèþ êîýôôèöèåíòîâ ðàçëîæåíèÿ.Ðàññìîòðèì çàäà÷ó: − d p(x) du + q(x)u = f (x) 0 < x < 1(221)dxdxu(0) = u(1) = 0(222)Ðàçîáüåì èíòåðâàë [0, 1] íà ñèñòåìó èíòåðâàëîâ [xk−1 , xk ] è ââåäåì äëÿ êàæäîãî k > 1 ôóíêöèþωk (x):0 0 6 x 6 xk−1ω̃1 (x) ≡ x−xk−1 xk−1 6 x 6 xk∆k−1/2ωk (x) =(223)xk+1 −xω̃(x)≡x6x6x2kk+1∆k+1/20 xk+1 6 x 6 xN = 124ãäå ∆k−1/2 = xk − xk−1 , ∆k = xk+1 − xk .Ñèñòåìà ôóíêöèé ωk (x) ïîëíà â òîì ñìûñëå, ÷òî ëþáóþ íåïðåðûâíóþ êóñî÷íî-ëèíåéíóþ ôóíêöèþ ψ(x) ñâîçìîæíûìè èçëîìàìè â óçëîâûõ òî÷êàõ {xk } è îáðàùàþùóþñÿ â íîëü â ãðàíè÷íûõ òî÷êàõ îòðåçêà [0, 1] ìîæíî ïðåäñòàâèòü â âèäå ëèíåéíîé êîìáèíàöèè ôóíêöèé{ωk (x)}:Xψ(x) =ψk ωk (x)(224)kãäå ψk = ψ(xk ).
Äëÿ {ωk (x)} ìîæíî ñôîðìóëèðîâàòüàíàëîã ñâîéñòâà îðòîãîíàëüíîñòè:Ðèñ. 8: Finite elements method0 n 6 k − 21Z1 6 ∆k−1/2 , n = k − 1(ωn (x)ωk (x)) = ωn (x)ωk (x)dx = 13 ∆k−1/2 + 13 ∆k+1/2 , n = k(225)016 ∆k+1/2 , n = k + 1Èç (221) ñëåäóåò:Z1 ddu−p(x)+ q(x)u − f (x) ωk (x)dx = 0dxdx(226)0Òàê êàêd−dxduddudu dωkp(x)ωk (x) = −p(x) ωk (x) + p(x)dxdxdxdx dx(227)è wk (0) = wk (1) = 0, òî èç (226) ñëåäóåò:Z1 du dωkp(x)+ (q(x)u − f (x))ωk (x) dx = 0dx dx(228)0- ãäå èíòåãðèðîâàíèåâåäåòñÿ ôàêòè÷åñêè îò xk−1 äî xk+1 â ñèëó îïðåäåëåíèÿ ωk (x). ÈùåìPu(x) â âèäåuk ωk (x).kZxkpk−1/2du dωkdx =(uk − uk−1 )dx dx∆k−1/2(229)pk+1/2du dωkdx = −(uk+1 − uk )dx dx∆k+1/2(230)p(x)xk−1xZk+1p(x)xkZxk1,21,1q(x)uωk dx = qk−1/2uk−1 + qk−1/2uk(231)xk−1xZk+12,22,1q(x)uωk dx = qk+1/2uk + qk+1/2uk+1(232)xkãäåpk+1/2 =1∆k+1/225xZk+1p(x)dxxk(233)i,jqk+1/2xZk+1q(x)ωi (x)ωj (x)dx=(234)xkÏîëó÷àåì ðàçíîñòíóþ ñõåìó:pk−1/2pk+1/21,21,12,21,2(uk − uk−1 ) −(uk+1 − uk ) + qk−1/2uk−1 + (qk−1/2+ qk+1/2)uk + qk+1/2uk+1 = Fk (235)∆k−1/2∆k+1/2ãäåxZk+1f (x)ωk dxFk =(236)xk−1Ê óðàâíåíèþ (235) ñëåäóåò äîáàâèòü ãðàíè÷íûå óñëîâèÿ:u0 = uN = 056(237)Ïðèâåäèòå ïðèìåð ïðîñòåéøåãî áàçèñà ìåòîäà êîíå÷íûõ ýëåìåíòîâ.ñì.