Н.Н. Калиткин - Численные методы (1133437), страница 69
Текст из файла (страница 69)
Значит, бу(х) =г"=ги — "1'" неограниченно возрастает при Ь-ьО, з з и счет неустойчив. Если учесть еще ошибку аппроксимации, то получим типичные графики зависимости погрешности решения от шага, приведенные на рис. 54, Сплошная линия соответствует устойчивой схеме, штрихи — неустойчивой. При уменьшении шага ошибка сначала для всех схем убывает, потому что уменьшается погрешность аппроксимации. Для устойчивых схем при Ь-+.О ошибка стремится к конечной величине, связанной с ошибкой начальных данных.
Если сама ошибка начальных данных исчезает при Ь-э.О, 312 УРАВНЕНИЯ В ЧАСТНЫХ ПРОИЗВОДНЫХ 1гл. гх то мы получим график, изображенный пунктиром; т. е. устойчивые схемы позволяют получить сколь угодно высокую точность (если отсутствуют ошибки округления). Если же схема неустойчива, то при малых шагах погрешность начальных или любых других данных сильно возрастает в ходе расчета и прн б-ь0 ошибка стремится к бесконечности.
Значит, график ошибки имеет ненулевой минимум, и мы в принципе не можем получить сколь угодно высокую точность бе 1 приближенного. решения. Правда, для неустойчивых схем есть некоторый оптимальный шаг, дающий наилучшую точность (это напоминает ."' б>— сходимость асимптотических рядов). Но эта наилучшая точность обычно настольРис. 54. ко плоха, что считать по неустойчивым схемам практически невозможно. Теоретически счет по неустойчивым схемам возможен, если начальные данные таковы, что погрешность их задания при Ь-+0 убываег быстрее, чем нарастает неустойчивость. Ыо класс начальных данных, удовлетворяющих этому условию, обычно крайне узок и не охватывает даже малой части интересных случаев. Как правило, погрешности входных данных и аппроксимации х — в 'и убЫВаЮт Прн СС-ьО ПО СтЕПЕИНОМу ЗаКОНу, а ВЕЛИЧИиа аг' вг>а ВОЗраетаст э много быстрей.
Отметим, что на устойчивость могут сильно влиять способы аппроксимации не только старших производных уравнения, но и младших производных и особенно краевых условий. 2, Основные понятия. Разностнаи схема (35) ААУ=Чг (хе= ша) ссьУ=Х (хе= Уь) устойчива, если решение системы разностньсх уравнений несгрврывно завсссит от входных данньсх ср, у и зта зависимость разномерна относительно шага сетки. Иными словами, для каждого е) 0 найдется такое б(е), не зависящее от шага й (по крайней мере, для достаточно малых й), что '11У' — Ун ггя„» е И' — Чггг!1„»б, ггХг — Хгг4ь»б.
(45) Если разностная схема (35) линейна, то разностное решение линейно зависит от входных данных. В этом случае б(е) =Ке, где К вЂ” константа, не зависящая от (с. Поэтому для линейных схем определение устойчивости (45) принимает следующий вид: 11У У 11яь — с)411сР 'Р' (1еь+ Мс11Х' — ХИ11хь> (45) гстончивость з1з где М, М,— константы, не зависящие от л. Напомним, что в (45) и (46) вариации решения и входных данных рассматриваются каждая в своей норме.
Дальше мы встретимся с примерами разностных схем, устойчивых прп одном выборе норм и неустойчивых — при лругом. Если независимых переменных несколько, то вводят понятия условной и безусловной устойчивости. Устойчивость называется безусювной, если (45) или (46) выполняется при произвольном соотношении шагов по различным переменным, лишь бы они были лостаточно малы.
Если для выполнения (45) нли (46) шаги по разным переменным должны удовлетворять дополнительным соотношениям, то устойчивость называется условной. Например, дальше будет доказано, что явная схема (18) для уравнения теплопроводцости устойчива только при т=-.Ь'!2й.
Непрерывную зависимость разностного решения от ~р называют устойчивостью но правой части, а непрерывную зависимость от у — устойчивостью по граничным условиям, Устойчивость по граничному условию на гиперплоскости 1= — 1, называют устойчивостью по начальным данным. Все простейшие типы уравнений, кроме эллиптического, в качестве одной из переменных содержат время. Для таких уравнений обычно ставится эволюционная залача — смешанная задача Коши. Даже эллиптические уравнения нередко численно решаются посредством счета на установление, т.
е. прн помощи постановки вспомогательной задачи Коши. Поэтому исследованию устойчивости эволюционных задач мы уделим особое внимание. Рассмотрим разностные схемы, солержащие только один известный и один новый слой, как (16) или (18). Такие схемы называют двдслойными. Их можно составить для любого уравнения. В самом деле, дифференциальное уравнение любого порядка по времени можно свести к системе уравнений первого порядка по времени, а Лля аппроксимации первой производной по времени достаточно двух слоев. Для двуслойных схем решение смешанной задачи Коши на некотором слое 1" можно рассматривать как начальные данные для всех последующих слоев.
Двуслойная разностная схема называется равномерно устойчивой по начальным данным, если при постановке начальных данных на любом слое 1" (1,~1ч <Т) она по ним устойчива, причем устойчивость равномерна по Р. Запишем условие равномерной устойчивости, ограничиваясь случаем линейных схем: 11д (1) — д (ц=КПд'((*) — дп(1")11, г. 1 с1 .т, (4у) гле константа К не зависит от Р и й; здесь у', уп — решения разностной схемы А„у= ~р с разными начальными данными и одной и той же правой частью. 314 уРАВнения В чАстных пРОизВОдных (гл.
!х Очевидно, нз равномерной устойчивости по начальным данным следует обычная устойчивость по начальным данным (но не наоборот). Признак равномерной устойчивости. Если А„у' = = Азу", то для равномерной устойчивости по начальным данным достаточно, чтобы при всех т выполнялось )) у' — уп))- () + Ст) ))у' — ун)), и=(„,— (м, С~О. (48) До к аз а тел ь ство. Условие (48) означает, что если на некотором слое имеется ошибка бу, то при переходе на следующий слой ))бу)) возрастает не более чем в (! +Ст) ==ее' раз. Для перехода от (а к г' надо сделать т=(г — (а)!т шагов по времени; при этом ошибка возрастет не более чем в ес"' =ее 1' — г'> (есгг — г» раз. Отсюда следует: ))б, (())) .
Я.))бу ((а))) гс ес (г — г,г (49) что и требовалось доказать. Признак (48) мы будем часто использовать при доказательстве устойчивости конкретных схем. Из (49) видно, что если константа С велика, то, хотя схема формально устойчива, фактическая ошибка можег сильно возрастать в ходе расчета; в этом случае схема является слабо устойчивой. Очевидно, чем больше промежуток времени Т вЂ” Гв, иа котором ищется решение, тем меньшая величина С обеспечивает хорошую устойчивость расчета. При Т -и со схема будет устойчивой, только если С=О.
Если точное решение задачи сильно возрастает или убывает с течением времени, то более интересна не абсолютная ошибка, а относительная ))оу(г)))г))у(0)). можно классифицировать устойчивость по нарастанию относительной ошибки. Пусть, например, и (х, Г) ехр (Се)). Тогда разностную схему, удовлетворяющую признаку (48), будем назыиать слабо устойчивой при ехр )(С вЂ” С,) (Т вЂ” Гз)) > 1, хорошо устойчивой — в обратном случае в осиллгло.
тически устойчивой при Т -г-со, если С ( Св. Для многослойных схем определение н признаки равномерной устойчивости по начальным данным имеют более сложный вид; мы не будем их рассматривать. Теорема. Пусть двуслойная разностная схема Аьу=гр равномерно успюйчива по начальным данным и такова, что если два разностньгх региения Аауь = ф» равны на некотором слое, у' =у", то на следующем слое выполняется соотношение ))у' — у")) ~ ат))гр' — гргг)), а = сопз(. (50) Тогда разносптая схема устойчива по правой части.
Доказательство. Наряду с решением у рассмотрим решение у, соответствующее возмущенной правой части А„у = ф; поскольку исследуется устойчивость только по правой части, то можно считать, что у ((а) = у ((а). % з1 тстопчивость Введем последовательность сеточных функций 1в (1), опреде- ленных при 1)1, следующими условиями: (1 ) = й ((о) т ч,(1 ) = 1е (1 ), т = 1, 2, ..., ) ф при Г .,~1(~, (51) !! <р при Эти функции определены так, что 1в„(0 =у(() при 1,((~( .
Заметим, что в тех же обозначениях можно записать 1ио(1) = — д(1). Сравним функции 1а (1) и ю„„,(1). На слое Г„они совпадают по определению. Тогда из (50) и (51) следует, что П шн 1 (1,д~1) — ж1н (Гонт) П ~ Ят П Ч~ — ф П. При 1==- Г„,, зги функции удовлетворяют разностной схеме с однои и той же правой частью Ч, но с разными начальными данными на слое 1,, Позтому в силу определения (47) на по- следнем слое 1м будут выполняться неравенства Пт, ((и) — ю ((м) П~ КПю (1 ) — ю.(1 -) П~ятКПч — ФП.