GL_15_Нуклеоф-ое зам-ие аром (1125825), страница 6
Текст из файла (страница 6)
Механизм ANRORC – это механизм раскрытия цикла при присоединении нуклеофильного агента с последующей рециклизацией.
Нуклеофильное замещение в гетероциклических системах сопровождается раскрытием цикла с последующей циклизацией, так что конечный результат оказывается таким же, как при нормальном или кине-замещении. Первоначально такой механизм был установлен и доказан с помощью меченых атомов для производных пиримидина (Х. Ван-дер-Плас, 1970). 2-Бром-4-фенилпиримидин, содержащий в кольце два атома 15N, реагирует с KNH2 в жидком аммиаке только на 15% по обычному механизму присоединения – отщепления SNAr с образованием 2-амино-4-фенилпиримидина, сохраняющего оба меченых атома азота в цикле. Главным направлением (85%) является присоединение амид-аниона в положение 6 с последующим раскрытием цикла и рециклизацией, приводящим к 2-амино-4-фенилпиримидину, содержащему 15N в аминогруппе:
Т акой механизм нуклеофильного замещения в ароматическом ряду получил название ANRORC-механизма (Addition of Nucleophile followed by Ring Opening and Ring Closure). Этот же механизм характерен для целого ряда перегруппировок азотистых гетероциклических соединений в изомерные ароматические и гетероциклические амины под действием оснований, описанные А.Н. Костом (1976 – 1980). Общая схема этих перегруппировок может быть формализована следующим образом:
В соответствии с этой схемой индолизины перегруппировываются в индолы, пиримидины – в 2-аминопиридины, и пиридиниевые соли – в замещенные анилины, хотя механизм этих перегруппировок не был предметом специального изучения, и приведенные ниже примеры отражают только логически обоснованную цепь превращений:
По сходному механизму осуществляется перегруппировка Димрота, заключающаяся в обмене местами между циклическим и экзоциклическим атомами азота в N-замещенных 2-иминопиримидинах в щелочной среде:
15.7. МОНОМОЛЕКУЛЯРНЫЙ МЕХАНИЗМ НУКЛЕОФИЛЬНОГО АРОМАТИЧЕСКОГО ЗАМЕЩЕНИЯ SN1
А рилгалогениды не склонны реагировать по механизму SN1 с промежуточным образованием арил-катиона. Это можно понять при рассмотрении строения фенил-катиона. Если считать, что в катионе C6H5+ ароматический секстет не нарушается (см. ниже), то в этом катионе пустая орбиталь будет sp2-гибридной и будет находиться в плоскости бензольного кольца, т.е. ортогональна ароматическому секстету электронов (формула XIII):
При таком строении π-электронная система не принимает учатия в стабилизации фенил-катиона. Кроме того, наличие sp2-гибридной вакантной орбитали делает его менее стабильным по сравнению с алкильными катионами, где пустой является негибридная p-орбиталь (гл. 9). В самом деле, в алкильных катионах шесть валентных электронов располагаются на трех sp2-гибридных орбиталях, а в фенил-катионе четыре электрона занимают две sp2-орбитали (σ-углерод-углеродные связи), а два являются π-электронами, т.е. находятся относительно далеко от ядер и слабее с ними взаимодействуют. Значит фенил-катион должен быть менее стабилен, чем алкильный катион. Энтальпия образования фенил-катиона из хлорбензола в газовой фазе очень высока (223 ккал/моль). Та же самая величина характеризует ионизацию винилхлорида с образованием крайне нестабильного винил-катиона.
C6H5Cl C6H5+ + Cl- + H0; H0 = + 223 ккал/моль
CH2=СHCl CH2=CH+ + Cl- + H0; H0 = + 223 ккал/моль
Энтальпия образования изопропильного (190 ккал/моль) т трет-бутильного (174 ккал/моль) карбокатионов в газовой фазе значительно ниже энтальпии ионизации хлорбензола. Эти данные подтверждают меньшую стабильность арильных катионов по сравнению со вторичными алкильными катионами. Растворитель сольватирует плоские алкильные катионы с обеих сторон плоскости, а фенил-катион лишь с внешней стороны, поскольку внутренняя доля вакантной орбитали находится внутри бензольного кольца. Таким образом, сольватационные эффекты в гораздо большей степени должны способствовать процессам с участием алкильных, а не арильных карбокатионов.
Возможно, однако, что электронное строение фенильного катиона иное, чем изображено формулой (XIII). Спектры ЭПР, полученные для растворов, в которых в принципе могут образовываться арильные катионы, указывают на то, что эти катионы имеют неспаренные электроны. Предполагается, что эти катионы частично имеют бирадикальную структуру:
В этой структуре нарушается ароматический секстет, что повышает энергию, но зато один из электронов переходит с p- на sp2-атомную орбиталь углерода, что понижает энергию. Возможно, что при переходе структуры (XIII) в структуру (XIV) выигрыш энергии есть, но, вероятно, он невелик.
Все это делает весьма проблематичным само существование арил-катионов в качестве реальных дискретных частиц, так же как и методы генерации частиц такого рода.
Единственным относительно достоверно изученным примером реакции нуклеофильного ароматического замещения, в которой в качестве интермедиата образуется арил-катион, является разложение ароматических солей диазония в отсутствие восстановителей и сильных оснований:
К таким реакциям относится гидролиз солей арендиазония (Nu = H2O), который приводит к образованию фенолов (гл. 23, ч.3).
Эта реакция характеризуется первым порядком по катиону диазония и независимостью скорости реакции от концентрации воды как нуклеофильноо агента. Кроме того, скорость реакции не изменяется при заvне H2O на D2O в качестве нуклеофильного агента. Добавки других нуклеофилов (кроме воды) приводят к смеси продуктов, но не влияют на скорость. Все эти данные соглавуются с мономолекулярным SN1-механизмом, в котором нуклеофильный агент не принимает участия в стадии, определяющей скорость всего процесса, и противоречат механизму присоединения – отщепления SNAr. Отсутствие обмена водорода на дейтерий для солей диазония ArN2+ в среде D2O исключает образование дегидробензола в качестве интермедиата. Малая селективность по отношению к различным нуклеофилам в конкурирующих реакциях свидетельствует о высокой активности интермедиата и согласуется с образованием арил-катиона в качестве такого интермедиата.
В процессе разложения катиона арендиазония, меченого изотопом 15N, в непрореагировавшем катионе наблюдается перераспределение метки:
О тсюда следует, что первая стадия разложения катиона диазония, по-видимому, обратима, а нуклеофильной атаке преимущественно подвергается молекулярно-ионная пара [Ar+N≡N]:
М ономолекулярный механизм замещения, включающий образование частиц типа [Ar+N≡N] или Ar+, характерен для процессов, где роль нуклеофильного агента выполняют жесткие анионы или нейтральные молекулы H2O, OH-, F-, Cl-. Тем не менее уже для реакции солей диазония с жестким алкоголят-ионом с мономолекулярным механизмом SN1 конкурируют другие процессы с образованием в качестве интермедиата радикала Ar•, арина (за счет отщепления азота и H+ из орто-положения), а также замещения по SNAr-механизму в кольце, активированном наличием самого электроотрицательного заместителя - диазогруппы -+N≡N.
В се эти продукты только частично дейтерированы (на 15, 19 и 87% соответственно):
15.8. РЕАКЦИИ СОЛЕЙ АРЕНДИАЗОНИЯ
С МЯГКИМИ ОСНОВАНИЯМИ ЛЬЮИСА
Реакции замещения диазогруппы в катионе арендиазония под действием мягких нуклеофильных агентов (I-, Br-, CN-, SCN-, N3-), а также каталитические реакции в присутствии солей меди (I), - реакция Зандмейера (гл. 22, ч.3), - протекают по совершенно иному механизму, который принципиально отличается от гетеролитического мономолекулярного механизма и не сопровождается образованием катиона Ar+ или молекулярно-ионной пары [Ar+N≡N]. Во многих случаях ключевой стадией реакции замещения диазогруппы в катионе арендиазония под действием мягкого основания Льюиса (мягкого нуклеофильного агента) является перенос одного электрона от нуклеофильного агента к катиону диазония с образованием арильного радикала и другого радикала, получившегося из исходного нуклеофильного агента. Этот механизм получил название SET-механизма (Single Electron Transfer; см. гл. 20).
Классическим примером такого рода реакции является взаимодействие солей арендиазония с йодид-ионом:
Для этой реакции первоначально был предложен окислительно-восстановительный цепной механизм, по смыслу полностью аналогичный SRN1-механизму Баннета, описанному в разделе 15.2:
Инициирование цепи:
Развитие цепи:
Радикальный характер реакции диазокатиона с йодид-ионом подтверждается тем, что из катиона бензолдиазония и йодид-иона в метаноле образуются: йодбензол (45%), бензол (15%), йод (10%) формальдегид (15%), который получается при дегидрировании метанола радикалом бонзолдиазония. Такой же механизм, возможно, реализуется и для ряда других мягких оснований в качестве нуклеофильных агентов SCN-, (RO)2PO- и др.
О днако недавно был предложен новый оригинальный подход к интерпретации механизма нуклеофильного замещения диазогруппы в катионе арендиазония, в котором не привлекаются представления об одноэлектронном переносе от восстановителя к окислителю. Взаимодействие катиона диазония ArN2+ с нуклеофильным агентом X- рассматривается в рамках термодинамического цикла, включающего три последовательных процесса: (1) ионизацию, (2) окислительно-восстановительную димеризацию и (3) радикальное диспропорционирование:
В термодинамический цикл входят два ковалентных диазосоединения – продукт присоединения нуклеофильного агента X- к катиону ArN2+ и димер диазосоединения (ArN2)2. Первый из них рассматривается как промежуточный продукт в реакции нуклеофильного замещения, а второй – как источник арильных радикалов, возникающих при его разложении. Степень образования ковалентного соединения Ar-N=N-Ar или димера (ArN2)2 зависит от кислотно-основных свойств ArN2+ и X- и их окислительно-восстановительных потенциалов и может быть рассчитана. Предполагается, что соли меди, образуя комплексы с ковалентной формой Ar-N=N-X, сдвигает равновесие в сторону ее образования, подавляя тем самым образование димеров и их радикальный распад. Ковалентная форма Ar-N=N-X образует комплекс и с солями MX, которые далее синхронно превращается в продукт формального нуклеофильного замещения:
Это предположение имеет аналогию в реакции солей диазония с азид-ионом, в этой реакции первоначально образуется циклический пентазен (XV), который далее разлагается на арилазид ArN3 и азот:
Согласно этой точке зрения, образование бензола и формальдегида в реакции C6H5N2+ и метанола обусловлено гомолитическим разложением димера:
В рамках этой концепции следует предположить, что мономолекулярный механизм SN1 с участием арил-катиона реализуется, когда нуклеофильный агент X- не образует ковалентной формы Ar-N=N-X или если константа образования такой формы очень мала. В противоположность представлениям об одноэлектронном переносе в рамках SET-механизма, эта концепция связывает образование радикальных частиц со вторичными процессами, реализующимися при необратимом гомолитическом распаде ковалентных димеров диазосоединений.