Е.В. Троицкий - Дифференциальная геометрия и топология (1124100), страница 8
Текст из файла (страница 8)
³·¥²®¬ (9,10), ¤®±² ²®·® ¤®ª § ²¼, ·²®hrirj Z; Z i = hrj riZ; Z i:36®±ª®«¼ª³ ¤«¿ ´³ª¶¨© ª®¢ °¨ ² ¿ ¯°®¨§¢®¤ ¿ ±®¢¯ ¤ ¥² ± · ±²®©, ±¢¿§®±²¼°¨¬ ®¢ , ²®@ 2 hZ; Z i = r (hr Z; Z i+hZ; r Z i) = 2 r hr Z; Z i = 2 hr r Z; Z i+2hr Z; r Z iijji ji jji@xi@xj¨@ 2 hZ; Z i = 2 hr r Z; Z i + 2hr Z; r Z i:j iij@xj @xi»·¨² ¿ ¨§ ¯¥°¢®£® ±®®²®¸¥¨¿ ¢²®°®¥ ¨ ¯®«¼§³¿±¼ ¥¹¥ ° § ±¨¬¬¥²°¨·®±²¼¾±ª «¿°®£® ¯°®¨§¢¥¤¥¨¿, ¯®«³· ¥¬ ²°¥¡³¥¬®¥ ±®®²®¸¥¨¥. ²®¡» ¯®«³·¨²¼ ¢»° ¦¥¨¥ ¢ ª®®°¤¨ ² µ, § ¯¨¸¥¬:0 = hR(ei ; ej )ek; eli + hR(ei ; ej )el; ek i = grs (R(ei; ej )ek)r (el)s + grs (R(ei; ej )el)r (ek )s == grs Rrm;ij (ek )mls + grsRrm;ij (el)m ks = grlRrk;ij + grk Rrl;ij = glr Rrk;ij + gkr Rrl;ij = Rlk;ij + Rkl;ij :4).
«¿ ¤®ª § ²¥«¼±²¢ ³¤®¡® ° ±±³¦¤ ²¼ ± ª °²¨ª®©. ®ª² ½¤° ¯° ¢ ¿¢¥°µ¿¿ £° ¼ ®¡®§ ·¥ ·¥°¥§ i, ¢ ¥¥ ¢¥°¸¨ µ ±²®¿² ª®¬¯®¥²», ®¬¥° ª®²®°»µ ·¨ ¾²±¿ ± i, ®±² «¼»¥ ²°¨ ¶¨ª«¨·¥±ª¨ ¯¥°¥±² ¢«¿¾²±¿. ° ¨, ¯°¨¬»ª ¾¹¨¥³£«®¬ ª ¢¥°¸¨ ¬ £° ¨ i, ³ ª®²®°»µ ¢²®°®© ¨¤¥ª± | q, k ¨ l, ®¡®§ · ¾²±¿ ½²¨¬¨¡³ª¢ ¬¨. ²® «¥¢ ¿ ¢¥°µ¿¿, ¨¦¿¿ § ¤¿¿ ¨ ¨¦¿¿ ¯¥°¥¤¿¿ £° ¨. ¢¥°¸¨ µ,¶¥²° «¼® ±¨¬¬¥²°¨·»µ ³¦¥ ®¡®§ ·¥»¬, ±² ¢¿²±¿ ª®¬¯®¥²» ± ±¨¬¬¥²°¨·»¬¨ ®¬¥° ¬¨, ².
¥., ¯°¨¬¥°, ¯°®²¨¢ ¢¥°µ¥© ¢¥°¸¨» Riqkl | ¨¦¿¿ Rlkqi .RiqkleB e BBBee BB i ee q Rkqli BB eeRiklq LL k BB LRqlki @RilqkL@@ L l @@LL @@LL Rlkqi³¬¬ ª®¬¯®¥², ±²®¿¹¨µ ¢ ¢¥°¸¨ µ ª ¦¤®© ®¡®§ ·¥®© £° ¨, ° ¢ ³«¾,ª ª ±«¥¤³¥² ¨§ ³¦¥ ¤®ª § »µ ¯³ª²®¢. «¿ £° ¨ i ½²® ±° §³ ±«¥¤³¥² ¨§ ²®¦¤¥±²¢ ª®¡¨. °®¢¥°¨¬ ½²®, ¯°¨¬¥°, ¤«¿ £° ¨ q:Riqkl + Rkqli + Rqlki = Rqikl Rqkli Rqlik = 037®¯¿²¼ ¯® ²®¦¤¥±²¢³ ª®¡¨. ¥¯¥°¼ ±«®¦¨¬ ²®¦¤¥±²¢ ¤«¿ ¤¢³µ ¢¥°µ¨µ £° ¥© i ¨q ¨ ¢»·²¥¬ ¤«¿ ¨¦¨µ k ¨ l:0 = (Riqkl + Riklq + Rilqk ) + (Riqkl + Rkqli + Rqlki)(Rkqli + Riklq + Rlkqi) (Rilqk + Rlkqi + Rqlki) = 2Riqkl 2Rlkqi : 2® ª®¶ ½²®£® ¯ ° £° ´ ¬» ¡³¤¥¬ § ¨¬ ²¼±¿ °¨¬ ®¢»¬¨ ±¢¿§®±²¿¬¨.¯°¥¤¥«¥¨¥ 9.10.
¢¥°²ª Rjl = Rijil ²¥§®° ¨¬ §»¢ ¥²±¿ ²¥§®°®¬¨··¨ ¤ ®© °¨¬ ®¢®© ±¢¿§®±²¨. ¢¥°²ª ¯®±«¥ ¯®¤¿²¨¿ ¨¤¥ª± ³ ²¥§®° ¨··¨ R = gli Ril §»¢ ¥²±¿ ±ª «¿°®© ª°¨¢¨§®©. ¤ · 9.11. ®ª § ²¼, ·²® ²¥§®° ¨··¨ ±¨¬¬¥²°¨·¥. ¤ · 9.12. ®ª § ²¼ ±«¥¤³¾¹¥¥ ³²¢¥°¦¤¥¨¥¥®°¥¬ 9.13. «¿ °¨¬ ®¢®© ±¢¿§®±²¨ ¢»¯®«¥® ²®¦¤¥±²¢®!@ 2gik@ 2gql + g ( m p m p ):mp qk ilql ik@xq@xl @xi@xk®ª § ²¥«¼±²¢®.
¡®§ ·¨¬ ¯°¨ ´¨ª±¨°®¢ »µ q ¨ l ·¥°¥§ iql ¢¥ª²®°®¥ ¯®«¥,±®¢¯ ¤ ¾¹¥¥ ¢ ±¨±²¥¬¥ ª®®°¤¨ ² (x1; : : : ; xn) ± iql. ½²®© ±¨±²¥¬¥ ª®®°¤¨ ²" r @ r#@ qlqkpprrrgir Rqkl = gir @xk @xl + ql pk qk pl =23" r#@r7= gir 2 Alt(k;l) @xqlk + pql rpk = 2 Alt(k;l) 64gir rkrql + (|r{zk gir )} ql 5 =0hi= 2 Alt(k;l) rk (gir rql) :®±ª®«¼ª³!!1@g1@gsq @gsl @gqliq @gil @gqlrsgir 2 g @xl + @xq @xs = 2 @xl + @xq @xi ; ¯°¨ ´¨ª±¨°®¢ »µ q ¨ l ¯®«¥ gir rql | ²¨¯ (0,1), ²®"!! #@@g@g@g@g@g@giqilqlmqmlqlmgir Rrqkl = Alt(k;l) @xk @xl + @xq @xi@xl + @xq @xm ik =" 2#2gil2gql !@g@@iqrm= Alt(k;l) @xk @xl + @xk @xq @xk@xi 2 gmr lq ik =2giq2gil2gql ! 12 giq2gik2gqk !1@@@@@@= 2 @xk@xl + @xk @xq @xk @xi 2 @xl@xk + @xl@xq @xl@xigmr rlq mik + gmr rkq mil ;·²® ¤ ¥² ²°¥¡³¥¬»© °¥§³«¼² ² ¯®±«¥ ³·¥² ±¨¬¬¥²°¨·®±²¨ ±¢¿§®±²¨ ¨ ¬¥²°¨ª¨.2Riqkl = gir Rrqkl2gil2gqk1@@= 2 @xq@xk + @xi@xl38«¥¤±²¢¨¥ 9.14.
±«¨ ²¥§®° ª°¨¢¨§» ¥ ®¡° ¹ ¥²±¿ ¢ ®«¼ ¢ ¥ª®²®°®© ±¨±²¥¬¥ ª®®°¤¨ ², ²® ¬®£®®¡° §¨¨ ¥«¼§¿ ¢¢¥±²¨ «®ª «¼® ¬¥²°¨·¥±ª¨ ¥¢ª«¨¤®¢» ª®®°¤¨ ²» (¬ ²°¨¶ ¬¥²°¨·¥±ª®£® ²¥§®° ¯®±²®¿ ) ¨«¨ «®ª «¼® ¥¢ª«¨¤®¢» ¢ ±¬»±«¥ ±¢¿§®±²¨ (±¨¬¢®«» °¨±²®´´¥«¿ ° ¢» ³«¾). ¤ · 9.15.¥¬³ ° ¢¥ ²¥§®° ª°¨¢¨§» ®¤®¬¥°®£® ¬®£®®¡° §¨¿ ?¥®°¥¬ 9.16.
¤¢³¬¥°®© £¨¯¥°¯®¢¥°µ®±²¨¥®© £ ³±±®¢®©:R = 2 K.M ±ª «¿° ¿ ª°¨¢¨§ ° ¢ ³¤¢®-®±ª®«¼ª³ ° ¢¥±²¢® ¯°®¢¥°¿¥²±¿ ¯®²®·¥·®, ²® ¬®¦¥¬ ±·¨² ²¼,·²® ¢ ®ª°¥±²®±²¨ ¨±±«¥¤³¥¬®© ²®·ª¨ P 2 M ¬®£®®¡° §¨¥ § ¤ ® ¢ ¢¨¤¥ £° ´¨ª x3 = f (x1; x2) ¢ ¤¥ª °²®¢»µ ª®®°¤¨ ² µ, x3(P ) = 0, ª ± ²¥«¼ ¿ ¯«®±ª®±²¼ TP M =Ox1 x2,@f ); ~r = (0; 1; @f );~r1 = (1; 0; @x21@x2!2!2@f ; g = 1 + @f ; g = g = @f @fg11 = 1 + @x2212211@x2@x1 @x2®ª § ²¥«¼±²¢®.| ª®¬¯®¥²» °¨¬ ®¢®© ¬¥²°¨ª¨ ¢ ²®·ª¥ P .
§ ¢¨¤ ª ± ²¥«¼®© ¯«®±ª®±²¨ ¯®«³· ¥¬, ·²® ¢ ²®·ª¥ P ¢»¯®«¥® @x@f = @x@f = 0. ·¨², ¯®±ª®«¼ª³!@ @f @f = @ 2f @f + @f @ 2f = 0 ¢ ²®·ª¥ P;@xk @xi @xj@xk @xi @xj @xi @xk @xj12²® @x@ k (gij )jP = 0. ®½²®¬³ ¨ ijk (P ) = 0. ® ´®°¬³«¥ ¨§ ²¥®°¥¬» 9.13 (¥¤¨±²¢¥ ¿@f = f )±³¹¥±²¢¥ ¿) ª®¬¯®¥² (¤«¿ ª° ²ª®±²¨ ¯¨¸¥¬ @xii2g122 g212g112g22 !1@@@@R12;12 = 2 @x1@x2 + @x1@x2 @x2@x2 @x1@x1 == 21 f2(f1f2)12 ((f2)2)11 ((f1)2)22g = (f11f2 + f1f12)2 (f2f21)1 (f1f12)2 == f112f2 + f11f22 + f12f12 + f1f122 f12f12 f2f112 f12f12 f1f122 =ff1112= f11f22 f12f12 = f f = K;12 22¯®±ª®«¼ª³ ª®½´´¨¶¨¥²» ¢²®°®© ª¢ ¤° ²¨·®© ´®°¬»bij (P ) = h~rij ;~ni = h(0; 0; fij ); (0; 0; 1))i = fij ; ¬ ²°¨¶ ¯¥°¢®© | ¥¤¨¨· ¿, ² ª ·²® ¯°®¨§¢¥¤¥¨¥ £« ¢»µ ª°¨¢¨§ ±®¢¯ ¤ ¥²± ®¯°¥¤¥«¨²¥«¥¬ ¬ ²°¨¶» ¢²®°®© ´®°¬». ¬¥²¨¬, ·²® ° ¢¥±²¢® R12;12 = K ¬»³±² ®¢¨«¨ ¢ ±¯¥¶¨ «¼®© ±¨±²¥¬¥ ª®®°¤¨ ², ±«¥¢ | ª®¬¯®¥² ²¥§®° , ±¯° ¢ | ±ª «¿°. «¥¥,R = gklRkl = gkl Rik;il = gklgir Rrk;il:39 ±±¬®²°¨¬ ±¨¬¬¥²°¨¨ Rij;kl:R12;12 = R21;12 = R12;21 = R21;21;R11;ij = R22;ij = Rkm;11 = Rkm;22 = 0:®½²®¬³R = g22g11R12;12 + g12g12R21;12 + g21g21R12;21 + g11g22R21;21 =R12;12 := R12;12 (g22g11 g12g12 g21g21 + g11g22) = 2 R12;12 det kgij k = 2 detkg kij²® ²¥§®°®¥ ° ¢¥±²¢®.
¸¥© ±¯¥¶¨ «¼®© ±¨±²¥¬¥ ª®®°¤¨ ² gij (P ) = ij ¨R(P ) = 2 K (P ). 2«¥¤±²¢¨¥ 9.17. ³±±®¢ ª°¨¢¨§ § ¢¨±¨² ²®«¼ª® ®² ¯¥°¢®© ´®°¬» ¯®¢¥°µ®±²¨ ¨, ±«¥¤®¢ ²¥«¼®, ¥ ¬¥¿¥²±¿ ¯°¨ ¨§®¬¥²°¨¿µ.¥¬¬ 9.18. ³±²¼(x1; : : : ; xn) | ª®®°¤¨ ²» ¢ ®ª°¥±²®±²¨ ²®·ª¨ P 2 M , £¤¥(M; r) | ¬®£®®¡° §¨¥ ± ±¨¬¬¥²°¨·¥±ª®© ±¢¿§®±²¼¾, ¥ ®¡¿§ ²¥«¼® °¨¬ ®¢®©,xi(P ) = 0; 8 i. ³±²¼ 2 TP M | ¯°®¨§¢®«¼»© ¢¥ª²®°, " = "(i; j ) | °¥§³«¼² ² ¥£® ¯¥°¥¥±¥¨¿ ¯® ª®²³°³xj6" 6- - xi?"040®£¤ lim " = Rkl;ij l :"!0 "2kk»¯¨¸¥¬ ¯°¨° ¹¥¨¥ ¢¤®«¼ ¥ª®²®°®© ª°¨¢®© ®² s0 ¤® s:kmk l dx ;k=k l dxm ;0 = d+dlmlmdsds¨ ± ²®·®±²¼¾ ¤® ¢²®°®£® ¯®°¿¤ª kk (s) k (s ) + @ lm (s )xr :k (s) k (s0) klm (s0)l (s0)xm;lmlm 0@xr 0 ª¨¬ ®¡° §®¬,! "k# m@lmrllprkkdx d pr (s0 ) (s0 )xlm (s0 ) + @xr (s0)x (s0 )"! #k@lmkllklp lm (s0) (s0) + @xr (s0) (s0) + lm (s0) pr (s0) (s0) xr dxm:¥°¥©¤¥¬ ª § ¬ª³²®¬³ ª®²³°³, ¡¥°¿ ¢±¥ § ·¥¨¿ ¯® ¥¯°¥°»¢®±²¨ ¢ P , ³·²¥¬,·²® ¯¥°¢®¥ ±« £ ¥¬®¥ ¤ ±² ®«¼, § ²¥¬ ³·²¥¬ ª®ª°¥²»© ¢¨¤ ª®²³° (¢ ¯«®±ª®±²¨¤¢³µ ª®®°¤¨ ²) ¨ ª®®°¤¨ ²®¥ ¢»° ¦¥¨¥ ¤«¿ ²¥§®° ¨¬ :" @ k# I!mm@x@xpmkkklpr12" @xr + lm pr x @u1 du + @u2 du =¯® ´®°¬³«¥ °¨ " @ k# ZZm!m !!@@x@@xpmklprr1 2x @u2= @xr + lm pr @u2 x @u1 du du =2 @u1" @ k# ZZr @xm @xm @xr !@xpmklp1 2= @xr + lm pr @u1 @u2 du du =2 @u1 @u2" @ k#" @ k#pipmklp2rmrmkl= @xr + lm pr " (i j j i ) = Altij @xj + li pj p"2 = "2 Rkp;ij p : 2 ¯®¬¨¬ ±«¥¤³¾¹¥¥ ®¯°¥¤¥«¥¨¥.¯°¥¤¥«¥¨¥ 9.19.
¢ ®²®¡° ¦¥¨¿ f0 ; f1 : M ! N £« ¤ª®£® ¬®£®®¡° §¨¿ M¡¥§ ª° ¿ ¢ ¬®£®®¡° §¨¥ N §»¢ ¾²±¿ £« ¤ª® £®¬®²®¯»¬¨, ¥±«¨ ±³¹¥±²¢³¥² ² ª®¥£« ¤ª®¥ ®²®¡° ¦¥¨¥ F ¬®£®®¡° §¨¿ ± ª° ¥¬ M [0; 1] ¢ N , ·²®F (P; 0) = f0(P ); F (P; 1) = f1(P ); 8 P 2 M:²¨¬ ®¯°¥¤¥«¥¨¥¬ ¥ ®µ¢ ²»¢ ¥²±¿ ¯®¿²¨¥ £®¬®²®¯¨¨ ¤¢³µ ¯³²¥©, ² ª ª ª¯³²¼ ¿¢«¿¥²±¿ ®²®¡° ¦¥¨¥¬ ¬®£®®¡° §¨¿ ± ª° ¥¬ { ®²°¥§ª .
²®¡» ®¯°¥¤¥«¥¨¥° ¡®² «®, ¬» ¡³¤¥¬ ±·¨² ²¼, ·²® ¯³²¼ ®²®¡° ¦ ¥² ¥ [a; b], (a "; b + "), ² ª·²® (a "; b + ") [0; 1] ¿¢«¿¥²±¿ ¬®£®®¡° §¨¥¬. ®¥·®, ¯°¨ ½²®¬ ¬» ¤®«¦»²°¥¡®¢ ²¼, ·²®¡»F (a; t) = f0(a) = f1(a); F (b; t) = f0(b) = f1(b); 8 t 2 [0; 1]:®ª § ²¥«¼±²¢®.41®·¥¬³ ½²® ¥®¡µ®¤¨¬® ? ±«¨ ®²ª § ²¼±¿ ®² ²°¥¡®¢ ¨¿ £« ¤ª®±²¨, ²® ¯®«³·¨¬ ®¯°¥¤¥«¥¨¥ (¥¯°¥°»¢®©) £®¬®²®¯¨¨ ¥¯°¥°»¢»µ ®²®¡° ¦¥¨© f0 ¨ f1 ¯°®¨§¢®«¼®£® ²®¯®«®£¨·¥±ª®£®¯°®±²° ±²¢ M ¢ ¯°®±²° ±²¢® N . ¤ · 9.21. ®ª ¦¨²¥, ·²® ¨§ ¥¯°¥°»¢®© £®¬®²®¯®±²¨ ¤¢³µ £« ¤ª¨µ ®²®¡° ¦¥¨© ±«¥¤³¥² ¨µ £« ¤ª ¿ £®¬®²®¯®±²¼. ¤ · 9.20.¥®°¥¬ 9.22.
¥§®° ¨¬ ° ¢¥ ³«¾ ²®£¤ ¨ ²®«¼ª® ²®£¤ , ª®£¤ °¥§³«¼² ²» ¯ ° ««¥«¼®£® ¯¥°¥¥±¥¨¿ ¯® ¤¢³¬ £®¬®²®¯»¬ ¯³²¿¬ ±®¢¯ ¤ ¾² (¨«¨, ·²®²® ¦¥ ± ¬®¥, °¥§³«¼² ² ¯¥°¥¥±¥¨¿ ¯® ±²¿£¨¢ ¥¬®¬³ § ¬ª³²®¬³ ª®²³°³ ±®¢¯ ¤ ¥² ± ¨±µ®¤»¬ ¢¥ª²®°®¬). ±«¨ °¥§³«¼² ² ¯¥°¥¥±¥¨¿ ¯® ±²¿£¨¢ ¥¬®¬³ § ¬ª³²®¬³ ª®²³°³ ±®¢¯ ¤ ¥² ± ¨±µ®¤»¬ ¢¥ª²®°®¬, ²®, ¢§¿¢ ¢ ª ·¥±²¢¥ ¥£® "-ª®²³° ¨§ ¯°¥¤»¤³¹¥© «¥¬¬», ¯®«³· ¥¬ ¯® ¥©, ·²® ²¥§®° ¨¬ ° ¢¥ ³«¾.¡° ²®, ¯³±²¼ 0; 1 : ( "; 1+") ! M | ¤¢¥ £®¬®²®¯»¥ ª°¨¢»¥, 0(0) = 1(0) =P0 , 0(1) = 1(1) = P1, £®¬®²®¯¨¿ G : ( "; 1 + ") [0; 1] ! M ³¤®¢«¥²¢®°¿¥² ½²®¬³³±«®¢¨¾ ¯°¨ «¾¡®¬ t (±·¨² ¥¬ s ¯ ° ¬¥²°®¬ ( "; 1 + "), t { [0; 1]).
¡° §³¥¬¢¥ª²®°®¥ ¯®«¥ t (s) | ª ± ²¥«¼®¥ ¢¤®«¼ G(s; t) ¯°¨ ´¨ª±¨°®¢ ®¬ t (¢ · ±²®±²¨,0 (s) ¨ 1(s) | ª ± ²¥«¼»¥ ª 0 ¨ 1), ¨ ¢¥ª²®°®¥ ¯®«¥ s (t) | ª ± ²¥«¼®¥ ¢¤®«¼G(s; t) ¯°¨ ´¨ª±¨°®¢ ®¬ s. ¡° §³¥¬ ¤«¿ § ¤ ®£® ¢¥ª²®° v 2 TP M ¢¥ª²®°®¥¯®«¥ vs(t), £¤¥ vs(t) | °¥§³«¼² ² ¯¥°¥¥±¥¨¿ v ¢¤®«¼ t(s) = G(s; t) ¯°¨ ´¨ª±¨°®¢ ®¬ t ¢ ²®·ª³ ± ¯ ° ¬¥²°®¬ s. ( ¬¥²¨¬, ·²® ¯°¨ ®¯°¥¤¥«¥¨¨ ¯¥°¥¥±¥¨¿ ¢ ®¡¹¥¬±«³· ¥ ¬» ¥ ²°¥¡®¢ «¨ °¥£³«¿°®±²¨, ²®«¼ª® £« ¤ª®±²¼ ª°¨¢®©.) ª §»¢ ¥²±¿,¯®«¥ vs(t) ª®¢ °¨ ²® ¯®±²®¿® ¢¤®«¼ G(s; t) ¯°¨ ´¨ª±¨°®¢ ®¬ s.¥©±²¢¨²¥«¼®,®ª § ²¥«¼±²¢®.0rt(s)rs(t)vsi (t) rs(t)rt(s)vsi (t) r[t(s);s(t)]vsi (t) = Rij;klvsj (t)tk (s)sl (t):® ®¯°¥¤¥«¥¨¾ vs(t) ¢²®°®¥ ±« £ ¥¬®¥ ±«¥¢ ° ¢® ³«¾. ±¨«³ ° ¢¥±²¢ ³«¾²¥§®° ¨¬ , ° ¢ ³«¾ ¯° ¢ ¿ · ±²¼. °¥²¼¥ ±« £ ¥¬®¥ ±«¥¢ ° ¢® ³«¾, ² ªª ª, ¯®« £ ¿ G(t; s) = (x1(t; s); : : :; xn(t; s)), ¨¬¥¥¬@@s (t)kt(s)kkjj[t(s); s(t)] = t (s) @xjs (t) @xj =j @ @xk ! @xj @ @xk ! @ 2xk @ 2xk@x= @s @xj @t@t @xj @s = @s@t @t@s = 0:² ª, ¯®«¥ rs(t)vs(t) ª®¢ °¨ ²® ¯®±²®¿® ¢¤®«¼ ª°¨¢®© t(s) ¨ ¯® ¯®±²°®¥¨¾° ¢® 0 ¯°¨ s = 0 (² ª ª ª v0(t) v).
«¥¤®¢ ²¥«¼®, rs(t)vs(t) = 0 ¯°¨ «¾¡®¬ s, ¢· ±²®±²¨, ¯°¨ s = 1. ª¨¬ ®¡° §®¬, ¯®±ª®«¼ª³ G(1; t) P1 , ²® 1(t) 0 ¨0 = r (t)v1i (t) = d v1i (t) + imk 1m (t)v1k(t) = d v1i (t);dtdt². ¥. v1 ¥ § ¢¨±¨² ®² t. 214210. ¨´´¥°¥¶¨°®¢ ¨¥ ¨ ¨²¥£°¨°®¢ ¨¥ ¤¨´´¥°¥¶¨ «¼»µ ´®°¬ ±±¬®²°¨¬ ¯°®¨§¢®«¼³¾ ±¨¬¬¥²°¨·¥±ª³¾ ±¢¿§®±²¼ r ¬®£®®¡° §¨¨ M( ¯°¨¬¥°, °¨¬ ®¢³ ±¢¿§®±²¼ ¥ª®²®°®© ¬¥²°¨ª¨) ¨ ¢¥¸¾¾ ¤¨´´¥°¥¶¨ «¼³¾ ´®°¬³ ! ° £ k, ². ¥. ª®±®±¨¬¬¥²°¨·¥±ª®¥ ²¥§®°®¥ ¯®«¥ ²¨¯ (0; k).
°®±²° ±²¢® ² ª¨µ ´®°¬ ¡³¤¥¬ ®¡®§ · ²¼ ·¥°¥§ k (M ). ®£¤ ®¯°¥¤¥«¥ ¢¥¸¨©¤¨´´¥°¥¶¨ « ¨«¨ £° ¤¨¥² d! ´®°¬» ! ¯® ´®°¬³«¥d! := (k +k! 1)! Altr!;¨«¨ ¢ ª®®°¤¨ ² µX(d!)j :::jk = k1!( 1) r(jk )!(j ):::(jk ):2Sk1+11+1+1£¤¥ ®¡®§ ·¥® (jk ) := j(k), ¢»¡¨° ¥²±¿ ² ª, ·²®¡» ¢ ª®®°¤¨ ² µ!1:::k;k+1( 1) = sgn (k + 1)(1) : : : (k) ;². ¥. = ( 1)k . ª ±«¥¤³¥² ¨§ ®¯°¥¤¥«¥¨¿, d! | ¢¥¸¿¿ ´®°¬ ° £ k + 1.¥¬¬ 10.1. ° ¤¨¥² d! ¥ § ¢¨±¨² ®² ¢»¡®° ±¨¬¬¥²°¨·¥±ª®© ±¢¿§®±²¨.¬¥®,(d!)j :::jk =1+1kX+1s=1( 1)s+1 @!j :::js@xjjss11+1:::jk+1:® ®¯°¥¤¥«¥¨¾ ª®¢ °¨ ²®© ¯°®¨§¢®¤®©(d!)j :::jk ="#kk XX(1)@!(j):::(j)= k!( 1) @x(jk ) k!(j ):::(jr )(jr ):::(jk ) (jr )(jk ) =r=12Skk X(j ):::(jk )= ( k1)!( 1) @!@x(jk )2Skk hiXX( 1)kk! ¯® ·¥²»¬ 2Sk r=1 (jr )(jk ) (jk )(jr ) !(j ):::(jr )(jr ):::(jk ) =(¢ ±¨«³ ±¨¬¬¥²°¨·®±²¨ ±¢¿§®±²¨)k X(jk )( 1) @!@x(j ()j:::== ( k1)!k )2Sk!kX+1 X@! (j )::: (js ) (js )::: (jk )11:::k+1= k!sgn s (1) : : : (s 1) (s + 1) (k + 1)=@xjs®ª § ²¥«¼±²¢®.1+111+1+11+1+11+1+1+11+11+1+11+1+11s=1 2Sk431+1+1kX+1 X@!= k1!( 1)s 1( 1) (j )::: (js@x)js(js11+1)::: (jk+1 )s=1 2Sk=(¢ ±¨«³ ª®±®±¨¬¬¥²°¨·®±²¨ !)kX+1 X= k1!( 1)s 1 ( 1) ( 1) @!j :::js@x;jjss :::jk =s=1 2SkkX+1@!1= k! k! ( 1)s+1 j :::js@x;jjss :::jk : 2s=1 ¬¥· ¨¥ 10.2.