Н.А. Слёзкин - Динамика вязкой несжимаемой жидкости (1124064), страница 42
Текст из файла (страница 42)
в виде (1.3). Отбрасывая в этих уравнениях: 1) квадратичные члены инерции, 2) локальную производную от вектора скорости по времени, 3) вектор массовой силы, получим дифференциальное уравнение в проекции на ось х ди ! др Едги дги дгиХ У вЂ” = — — — + ч( — + — + — г. дх р дх (две дуг дезу' (3.1) Поскольку движение жидкости вызывается только движением пластинки и на границе среды Огу, давление постоянно, то можно принять градиент давления вдоль оси х равным нулю, т. е. др Р=О. дх Если считать пластинку в направлении осн е достаточно широкой, то иожно положить; ди — =О. де 233 % 3! пеониканив пластинки в вязктю свндт ди ! д2и дви дх 2В дут дуз (3.4) где п = —. и' (3.5) Таким образом, дифференциальное уравнение (3.4) было получено с помощью: 1) частичного учета квадратичных членов инерции (по Овеену) н 2) частичного учвта членов вязкости (по Рейнольлсу).
Примем следующие граничные условия: !) до подхода края пластинки вся среда пребывает в полном покое, т. е. при х= — 0 и=О; (3.6) 2) частицы жидкости прилипают к сторонам пластинки прн х)0 у=0, и=У; (3.7) 3) при удалении от пластинки в сторону по осн у скорость уменьшается ло нуля, в частности, при у = оо и = О. (3.8) Дифференциальное уравнение (3.4) совпадает с дифференциальным уравнением одномерной задачи теплопроводности. Рассматриваемая же задача при условвях (3.6), (3.7) и (3.3) совпадает формально с задачей нагрева полубесконечного стержня с конца. Решение втой задачи имеет вид О7 и == ~ е-В'с(р= У!! — — ~ е-""яп = — !.
(3.9) в т'йе Вычисляя силу вязкости на пластинке по формуле ди т р ду' получим (т) . = —. пУ у'. или, подставляя значение и из (З.б): пц'д (т) я=в ьг — ' (3.10) (3.11) В предеяах погруженной части пластинки изменение компоненты скорости и в направлении оси у преобладает над изменением втой скорости в продольном направлении .за исключением, быть может, только края пластинки. Следовательно, второй произволной по х от и можно пренебречь по сравнению со второй производной от и по у.
Тогда из (3.!) получим следующее дифференциальное уравнение: 234 лвнжвние пги малых числах гейнольдсл ивтод озввнл (гл. чп Таким образом, сила вязкости в какой-либо точке на погружаемой в вязкую среду пластинке пропорциональна скорости в степени з/э н обратно пропорциональна 'квалратному корню из расстояния этой точки от края пластинки. Обозначим ширину пластинки через Ь. Умножая обе части равенства (3.1!) на 2Ьях и интегрируя от нуля до Ь, где Ь вЂ” длина ппгружанной части пластинки, получим следующую формулу для сопротивления трения врезанию тонкой пластинки в вязкую среду Р = — — Ь()п $' руд = — 2,257Ь(РУ ррй. (3.12) у-к Следовательно, сопрогнвленне прониканию тонкой пластинки в вязкую несжимаемую среду зависит не только от скорости проника.
ния () в степени з(з, но и от глубины проникания Ь в степени '/з. 1(опустим, что проннкание пластинки в вязкую среду происходит благодаря тому, что этой п.частнике с весом Р сообщена некоторая начальная скорость (Г. Составляя дифференциальное уравнение движения этой пластинки, получим: Р Л() чл — и-- = — = ()и у'рр(, л дл Разделяя переменные и проволя интегрирование, будем иметь: (3.!3) Обозначая предельную глубцну проникания пластинки через Н, прн которой скорость У обращается в нуль, получим из (3.13) следующую формулу для коэффициента вязкости среды.' эв Р- '1 ,, = — и,— —,—.
1б рдз ЬэН ~' (3,!4) й 4. Задача об обтекании цилиндра В 3 3 главы Ч было показано, что задача об установившемся движении круглого цилиндра в безграничной жидкости на основании уравнений Стокса не может быть решена. Для уравнений же Озеена, в которых квадратичные члены инерции учтены частично, решение этой задачи становится возможным. !(опустим, что в безграничном потоке вязкой несжимаемой жидкости помещзн неподвижный круглый цилиндр радиуса а (рнс. 64).
Полученной формулой можно пользоваться дзя экспериментального определения коэффициента вязкости весьма вязких сред с помощью ударного погружения в ннх тонкой пластинки. 0 4! влдлчл оь оьтеклнии цилиндгл Граничные условия прилипания жидкости к поверхности цилиндра и условия на бесконечности будут прелставляться в виде при г=а о,=О, ие = О; при г= со 'и = Усоь О, оь — — Уь!па, (4.1) Так как вектор скорости частиц жидкости на основании равенств (2.!2) равен и единичный вектор 1 оси х будет составлять с наГччс.
61, правлением г угол О, то при переходе к поляркым координатам г и 0 получим: (4.3) Фуннция о будет удовлетворячь уравнению Лапласа па плоскос~чч дтт ~ дет дхе ' дуя (4 4) а функция у будет представляться в виде ;( = — У+ еелУ, (4 б) где множитель У будет удовлетворять уравнению Гельмгольца дау да у.
дхт дут — + — — ))тУ =- О. (4.0) Проектируя подинтегральное выражение (2,!8) на ось х, получии: дт дт . дтдх дуду дт дх ду дхдг дудг дг' — сов 0-)- — ып 0 = -- - + Следовательно, формула (2.18) для сопротивления цилиндра примет вид )~л=риа ! д еда, 1 дч (4.7) Основное решение уравнения Лапласа (4.4), предсчавляющее потенциал скоростей источника .в начале координат, имеет вид о =!п г.
(4М) 0г = — Ут'+ + йгаб(у+2 — у) (4.2) чч = — у соь0+,— —. 1 дт 'че дг 1 дк оь .= у а(0 О+ — — + 2агде дв +— дг ' 1 дт г де' яоо движвнив пзи малых числах звйнольдсл. метод озввнл [гл. чп Дифференцируя вто решение (4.8) по х и суммируя полученные таким способом новые частные решения, получим для функции е следующий ряд; ОЭ дю Ф =,Га А» дХВ 1П Г.
(4.9) Так как д!Пг х сове дх гв ! 2хв ! — 2 сове З сов 2З дв!пг дхв гв гв гв гв 2х ех бхв 6 сов З б сове З гв гв гв дв!пг сов ЗВ гв дхв рв гв дв!пг да,,с з то ряд (4.9) для функции у можно представить в виде р =Ао!п г+ ~~( — 1)" '(п — 1)'Ав — (4 1О) в в Подставляя значение о из (4.10) в (4.7), получим: Ов в* Я„=2прУАе+ ~( — 1)" ~ — „", ~созпбМ. Таким образом, сопротивление круглого цилиндра будет зависеть от одного козффициента, представляющего собой мощность источника (4.В), и будет представляться в виде Общее решение уравнения (4.12) представляется через функции Бесселя нулевого порялка от мнимого аргумента в виде у= Свуо(дг) + авдо (дг). С возрастанием аргумента функция Бесселя ге(йг) неограниченно растет, позтому необходимо положить: С =0. )2 = 2прУАо. г4.11) Лля функции у.
зависящей только от полярного радиуса г, дифференциальное уравнение (4.6) примет вид 1"'+ — У' — ДзУ = О. задача ов овтвкании цнлиндтл Дифференцируя эту функцию источника по х и с, .еируя ревультаты после умножения на постоянные коэффициенты и множитель е", получим следующий ряд для функции у: О у = — У+ е'- „Э', В..р~ Ке(дг). я=0 (4.14) Граничным условиям (4.1) прилипания будем удовлетворять приближенно. Для этого в выражении (4.14) для у, считая, что пер.
вые два коэффициента имеют порядки величин Ве-1 Ва-л. сохраним слагаемые, имеющие порядок величины д в первой степени. Так как для малых вначений аргумента функция Макдональда нуле- вого порядка и ее первая производная представляются в виде (4.13) д сов Š— К (дг)ж — — = — —, дл где 7 — постоянная, равная 1,7811, то приближенное значение функ- ции у будет равно у — (7 — Вфп( — 7лг)+Дг сов 0 1п(у (Дг)~ — — ' (4.!б) Вычисляя по формулам (4.3) компоненты скоростей с точностью до ~1 величин порядка единицы и отбрасывая величины порядка Дг 1п! — 7йг), получим: о = — — — +(7сова — — Ве Х Ае Аг соз 0 1 т 2 Х !( — -1- соз 0 — соз 0 !п !т- тдг)~ + —, Г! /1 Ы В!созе (л (2 7) 2агз А,ми а Мпа (! ! Взэ!па оз — — — ' — У з!п 0 —  — 1п ( — Тдг) + — ' гя е 2 (2 7 2Ьз (4.!7) Полагаем в правых частях (4.17) г=а и приравниваем левые части нулю. Приравнивая отдельно нулю коэффициенты при степенях сов О, Ф Такам образом, функция источника в начале координат на плоскости для уравнения (4.6) будет представлять собой функцию Макдональда нулевого порядка.