А.Б. Рубин - Биофизика (одним файлом) (1123033), страница 26
Текст из файла (страница 26)
ðÕÓÔØ × ÓÉÓÔÅÍÅ ÏÄÎÏ×ÒÅÍÅÎÎÏ ÐÒÏÔÅËÁÀÔ Ä×ÅÎÅÏÂÒÁÔÉÍÙÅ ÒÅÁËÃÉÉ. ïÞÅ×ÉÄÎÏ, ÞÔÏ ÕÓÌÏ×ÉÅ (V.2.14)A1 v1 + A2 v2 > 0(V.2.15)ÍÏÖÅÔ ×ÙÐÏÌÎÑÔØÓÑ ÎÅ ÔÏÌØËÏ ÐÒÉA1 v1 > 0; A2 v2 > 0;(V.2.16)ÎÏ É ËÏÇÄÁA1 v1 < 0; A2 v2 > 0:(V.2.17)ðÅÒ×ÁÑ ÒÅÁËÃÉÑ × ÜÔÏÍ ÓÌÕÞÁÅ ÎÁÚÙ×ÁÅÔÓÑ ÓÏÐÒÑÖÅÎÎÏÊ, ×ÔÏÒÁÑ | ÓÏÐÒÑÇÁÀÝÅÊ. éÍÅÎÎÏ ÉÈ ÔÅÒÍÏÄÉÎÁÍÉÞÅÓËÏÅ ÓÏÐÒÑÖÅÎÉÅ ÐÏÚ×ÏÌÑÅÔ ÓÏÐÒÑÖÅÎÎÏÊ ÒÅÁËÃÉÉ ÐÒÏÔÅËÁÔØ × ÔÁËÏÍ ÎÁÐÒÁ×ÌÅÎÉÉ, ËÏÇÄÁ ×ÅÌÉÞÉÎÙ A1 É v1 ÏÂÌÁÄÁÀÔ ÒÁÚÎÙÍÉÚÎÁËÁÍÉ.kkkkkióÏÐÒÑÖÅÎÉÅ ÐÒÏÃÅÓÓÏ×.knn128çÌÁ×Á V. ôÅÒÍÏÄÉÎÁÍÉËÁ ÓÉÓÔÅÍ ×ÂÌÉÚÉ ÒÁ×ÎÏ×ÅÓÉÑ (ÌÉÎÅÊÎÁÑ ÔÅÒÍÏÄÉÎÁÍÉËÁ)õÓÌÏ×ÉÑ (V.2.16), (V.2.17) ÄÁÀÔ ×ÅÒÈÎÉÊ ÐÒÅÄÅÌ ÓËÏÒÏÓÔÉ ÓÏÐÒÑÖÅÎÎÏÊ ÒÅÁËÃÉÉv1 6 A2 v2 =A1 ;(V.2.18)ÓÕÝÅÓÔ×Ï×ÁÎÉÅ ËÏÔÏÒÏÇÏ ÐÏÚ×ÏÌÑÅÔ Ó×ÑÚÁÔØ ÞÉÓÔÏ ÔÅÒÍÏÄÉÎÁÍÉÞÅÓËÕÀ ×ÅÌÉÞÉÎÕÈÉÍÉÞÅÓËÏÇÏ ÓÒÏÄÓÔ×Á Ó ×ÁÖÎÅÊÛÅÊ ËÉÎÅÔÉÞÅÓËÏÊ ÈÁÒÁËÔÅÒÉÓÔÉËÏÊ ÐÒÏÃÅÓÓÁ | ÅÇÏÓËÏÒÏÓÔØÀ.
óÕÝÅÓÔ×Ï×ÁÎÉÅ ÔÅÒÍÏÄÉÎÁÍÉÞÅÓËÏÇÏ ÓÏÐÒÑÖÅÎÉÑ ÐÏÚ×ÏÌÑÅÔ ÐÏ-ÎÏ×ÏÍÕÐÏÄÏÊÔÉ Ë ÏÃÅÎËÅ ÜÎÅÒÇÅÔÉÞÅÓËÏÊ ÜÆÆÅËÔÉ×ÎÏÓÔÉ ÓÉÓÔÅÍÙ ÒÅÁËÃÉÊ ËÌÅÔÏÞÎÏÇÏ ÍÅÔÁÂÏÌÉÚÍÁ ÐÏ ÓÒÁ×ÎÅÎÉÀ Ó ÍÅÔÏÄÁÍÉ ËÌÁÓÓÉÞÅÓËÏÊ ÔÅÒÍÏÄÉÎÁÍÉËÉ. îÅÏÂÒÁÔÉÍÙÅÐÒÏÃÅÓÓÙ, ÐÒÉ×ÏÄÑÝÉÅ Ë ÒÁÓÓÅÑÎÉÀ ÜÎÅÒÇÉÉ, Ñ×ÌÑÀÔÓÑ ÐÒÉÞÉÎÏÊ ÔÅÐÌÏ×ÏÊ ÄÅÇÒÁÄÁÃÉÉ Ó×ÏÂÏÄÎÏÊ ÜÎÅÒÇÉÉ ÓÉÓÔÅÍÙ. ïÄÎÁËÏ ÓÏÐÒÑÖÅÎÉÅ ÎÅÏÂÒÁÔÉÍÙÈ ÉÚÍÅÎÅÎÉÊ ÞÁÓÔÉÞÎÏ ÐÒÅÄÏÔ×ÒÁÝÁÅÔ ÜÔÉ ÐÏÔÅÒÉ, ÏÂÅÓÐÅÞÉ×ÁÑ ÔÅÍ ÓÁÍÙÍ ÏÓÎÏ×ÎÏÊ ÐÕÔØ ÐÒÅÏÂÒÁÚÏ×ÁÎÉÑ É ÚÁÐÁÓÁÎÉÑ ÜÎÅÒÇÉÉ ÍÅÔÁÂÏÌÉÞÅÓËÉÈ ÒÅÁËÃÉÊ × ÖÉ×ÏÊ ÓÉÓÔÅÍÅ × ÆÏÒÍÅ ÈÉÍÉÞÅÓËÉÈ Ó×ÑÚÅÊ É ËÌÅÔÏÞÎÙÈ ÓÔÒÕËÔÕÒ.
ðÒÉ ÜÔÏÍ ÏÂÝÅÅ ÉÚÍÅÎÅÎÉÅ ÜÎÔÒÏÐÉÉ d S=dtÄÌÑ ÓÏÐÒÑÖÅÎÎÙÈ ÜÎÅÒÇÅÔÉÞÅÓËÉÈ ÐÒÏÃÅÓÓÏ× ÏÓÔÁÅÔÓÑ ÐÏÌÏÖÉÔÅÌØÎÙÍ (V.2.14).d S=dtóÕÝÅÓÔ×ÕÅÔ ÍÎÏÖÅÓÔ×Ï ÉÓÓÌÅÄÏ×ÁÎÉÊ, ÇÄÅ ÄÅÌÁÀÔÓÑ ÐÏÐÙÔËÉ ÏÃÅÎÉÔØ ÓËÏÒÏÓÔØ ÉÚÍÅÎÅÎÉÑ ÜÎÔÒÏÐÉÉ ÂÉÏÌÏÇÉÞÅÓËÉÈÓÉÓÔÅÍ ÐÕÔÅÍ ÜËÓÐÅÒÉÍÅÎÔÁÌØÎÏÇÏ ÏÐÒÅÄÅÌÅÎÉÑ ÉÈ ÔÅÐÌÏÐÒÏÄÕËÃÉÉ. üÔÉ ÒÁÂÏÔÙÏÓÎÏ×ÁÎÙ ÎÁ ÐÒÅÄÐÏÌÏÖÅÎÉÉ, ÞÔÏ ×ÅÌÉÞÉÎÁ ÜÎÔÒÏÐÉÉ ÓÁÍÉÈ ÒÅÁÇÉÒÕÀÝÉÈ ×ÅÝÅÓÔ×ÎÅ ÉÚÍÅÎÑÅÔÓÑ × ÈÏÄÅ ÒÅÁËÃÉÉ. óÒÏÄÓÔ×Ï (A) ÐÒÏÃÅÓÓÁ ÏËÁÚÙ×ÁÅÔÓÑ ÎÅÐÏÓÒÅÄÓÔ×ÅÎÎÏÓ×ÑÚÁÎÎÙÍ Ó ÅÇÏ ÔÅÐÌÏ×ÙÍ ÜÆÆÅËÔÏÍ (r ), ÒÁ×ÎÙÍ ÉÚÍÅÎÅÎÉÀ ÜÎÔÁÌØÐÉÉ (H ) ×ÈÏÄÅ ÒÅÁËÃÉÉ:A = ;(@H=@ x) + T (@S=@ x) = r ;(V.2.19)ÇÄÅ (@S=@ x) = 0; x | ÓÔÅÐÅÎØ ÐÏÌÎÏÔÙ ÒÅÁËÃÉÉ, ÏÐÒÅÄÅÌÑÅÍÁÑ ÉÚÍÅÎÅÎÉÅÍ ÞÉÓÌÁÍÏÌÅÊ ÒÅÁÇÅÎÔÏ× dx = dn =(n r).
ôÏÇÄÁ ÓËÏÒÏÓÔØ ÐÒÏÄÕÃÉÒÏ×ÁÎÉÑ ÜÎÔÒÏÐÉÉ ÐÒÏÐÏÒÃÉÏÎÁÌØÎÁ ÔÅÐÌÏ×ÏÍÕ ÜÆÆÅËÔÕ:d S = Av ' r v = 1 dQ :(V.2.20)dtTTT dtió×ÑÚØ ×ÅÌÉÞÉÎÙÓ ÔÅÐÌÏÐÒÏÄÕËÃÉÅÊ.iT ;pT ;pT ;pT ;pT ;pkkiT ;pT ;pôÁËÉÍ ÏÂÒÁÚÏÍ, ÚÎÁÑ ÔÅÐÌÏ×ÙÅ ÜÆÆÅËÔÙ É ÓËÏÒÏÓÔØ ÐÒÏÃÅÓÓÁ, ÍÏÖÎÏ ×ÙÞÉÓÌÉÔØ ÓËÏÒÏÓÔØ ÐÒÏÄÕÃÉÒÏ×ÁÎÉÑ ÜÎÔÒÏÐÉÉ, ÓÏÐÒÏ×ÏÖÄÁÀÝÅÇÏ ÅÇÏ ÐÒÏÔÅËÁÎÉÅ (ÏÐÙÔÙ ÏÂÙÞÎÏ ÐÒÏ×ÏÄÑÔ × ÓÐÅÃÉÁÌØÎÙÈ ÍÉËÒÏËÁÌÏÒÉÍÅÔÒÁÈ, ÐÏÚ×ÏÌÑÀÝÉÈ ÉÚÍÅÒÑÔØÓËÏÒÏÓÔØ ÔÅÐÌÏÐÒÏÄÕËÃÉÉ ÓÉÓÔÅÍÙ).ïÄÎÁËÏ ÐÒÉÍÅÎÅÎÉÅ ÕÒÁ×ÎÅÎÉÑ (V.2.20), ÓÐÒÁ×ÅÄÌÉ×ÏÇÏ ÄÌÑ ÐÒÏÓÔÙÈ ÈÉÍÉÞÅÓËÉÈÒÅÁËÃÉÊ, ×ÓÔÒÅÞÁÅÔ ÃÅÌÙÊ ÒÑÄ ÔÒÕÄÎÏÓÔÅÊ ÐÒÉ ÉÚÕÞÅÎÉÉ ÂÉÏÌÏÇÉÞÅÓËÉÈ ÓÉÓÔÅÍ.
ëÁËÓÌÅÄÕÅÔ ÉÚ ÜÔÏÇÏ ÕÒÁ×ÎÅÎÉÑ, ÏÎÏ Ó×ÑÚÙ×ÁÅÔ ÔÅÐÌÏÐÒÏÄÕËÃÉÀ Ó ÈÉÍÉÞÅÓËÉÍÉ ÐÒÏÃÅÓÓÁÍÉ (A; v), × ËÏÔÏÒÙÈ ÓÏ×ÅÒÛÁÅÔÓÑ ÐÏÌÅÚÎÁÑ ÒÁÂÏÔÁ. éÍÅÎÎÏ ÜÔÉ ÒÁÂÏÞÉÅ ÐÒÏÃÅÓÓÙ,ÚÁ ÓÞÅÔ ËÏÔÏÒÙÈ ÐÒÏÉÓÈÏÄÉÔ ÒÏÓÔ É ÒÁÚ×ÉÔÉÅ ÏÒÇÁÎÉÚÍÏ×, ÐÒÅÄÓÔÁ×ÌÑÀÔ ÉÎÔÅÒÅÓÐÒÉ ÒÁÓÓÍÏÔÒÅÎÉÉ Ó×ÑÚÅÊ ÍÅÖÄÕ ÖÉÚÎÅÄÅÑÔÅÌØÎÏÓÔØÀ ÖÉ×ÙÈ ÓÉÓÔÅÍ É ÉÚÍÅÎÅÎÉÅÍÉÈ ÜÎÔÒÏÐÉÉ. íÅÖÄÕ ÔÅÍ × ÏÒÇÁÎÉÚÍÁÈ ÚÎÁÞÉÔÅÌØÎÁÑ ÞÁÓÔØ ÐÏÓÔÕÐÁÀÝÉÈ ÉÚ×ÎÅ ÓÏÅÄÉÎÅÎÉÊ ÒÁÓÈÏÄÕÅÔÓÑ ÂÅÚ ÓÏ×ÅÒÛÅÎÉÑ ÒÁÂÏÔÙ ÎÁ ÔÅÐÌÏÐÒÏÄÕËÃÉÀ, ÜË×É×ÁÌÅÎÔÎÕÀÒÁÚÎÏÓÔÉ ÉÈ ×ÎÕÔÒÅÎÎÉÈ ÜÎÅÒÇÉÊ É ÐÒÏÄÕËÔÏ× ×ÙÄÅÌÅÎÉÑ. üÔÉÍÉ ÐÒÏÃÅÓÓÁÍÉ, × ÞÁÓÔÎÏÓÔÉ, ÏÂÅÓÐÅÞÉ×ÁÅÔÓÑ ÐÏÄÄÅÒÖÁÎÉÅ ÔÅÍÐÅÒÁÔÕÒÙ ÔÅÌÁ ÔÅÐÌÏËÒÏ×ÎÙÈ ÖÉ×ÏÔÎÙÈ.óÁÍÏ ÐÏ ÓÅÂÅ ÐÒÏÔÅËÁÎÉÅ ÒÁÂÏÞÉÈ ÐÒÏÃÅÓÓÏ× × ÏÒÇÁÎÉÚÍÅ ÔÁËÖÅ ÓÏÐÒÏ×ÏÖÄÁÅÔÓÑ×ÙÄÅÌÅÎÉÅÍ ÔÅÐÌÏÔÙ, ËÏÔÏÒÁÑ ÕÞÉÔÙ×ÁÅÔÓÑ × ÆÏÒÍÕÌÅ (V.2.20). ïÄÎÁËÏ ÜÔÁ ÔÅÐÌÏ-x 3.
óÏÏÔÎÏÛÅÎÉÅ ÍÅÖÄÕ ÚÎÁÞÅÎÉÑÍÉ Ä×ÉÖÕÝÉÈ ÓÉÌ É ÓËÏÒÏÓÔÅÊ ÐÒÏÃÅÓÓÏ×129ÐÒÏÄÕËÃÉÑ ÓÏÓÔÁ×ÌÑÅÔ, ÏÞÅ×ÉÄÎÏ, ÌÉÛØ ÞÁÓÔØ ÏÂÝÅÇÏ ÔÅÒÍÏÇÅÎÅÚÁ. ëÒÏÍÅ ÔÏÇÏ, ÓÕÝÅÓÔ×ÅÎÎÙÍ ÏÂÓÔÏÑÔÅÌØÓÔ×ÏÍ Ñ×ÌÑÅÔÓÑ ÎÁÌÉÞÉÅ ÔÅÒÍÏÄÉÎÁÍÉÞÅÓËÏÇÏ ÓÏÐÒÑÖÅÎÉÑ,ËÏÔÏÒÏÅ ÏÂÅÓÐÅÞÉ×ÁÅÔ ÚÁÐÁÓÁÎÉÅ × ÂÉÏÌÏÇÉÞÅÓËÉÈ ÓÔÒÕËÔÕÒÁÈ ÞÁÓÔÉ ÜÎÅÒÇÉÉ, ÏÓ×ÏÂÏÖÄÁÅÍÏÊ × ÈÏÄÅ ÎÅÏÂÒÁÔÉÍÙÈ ÒÁÂÏÞÉÈ ÐÒÏÃÅÓÓÏ×. ïÂÒÁÚÏ×ÁÎÉÅ áôæ, ÓÏÐÒÑÖÅÎÎÏÅÓ ÐÒÏÃÅÓÓÁÍÉ ÏËÉÓÌÅÎÉÑ, ÐÒÅÄÓÔÁ×ÌÑÅÔ ÓÏÂÏÊ ÎÁÉÂÏÌÅÅ ×ÁÖÎÙÊ ÐÒÉÍÅÒ.ïÞÅ×ÉÄÎÏ, × ÜÔÏÍ ÓÌÕÞÁÅ ÔÅÐÌÏ×ÏÊ ÐÏÔÏË, ÏÂÕÓÌÏ×ÌÅÎÎÙÊ ÎÅÏÂÒÁÔÉÍÙÍÉ ÐÒÏÃÅÓÓÁÍÉ ÏËÉÓÌÉÔÅÌØÎÏÇÏ ÆÏÓÆÏÒÉÌÉÒÏ×ÁÎÉÑ, ÍÏÖÅÔ ÉÚÍÅÎÑÔØÓÑ × ÚÁ×ÉÓÉÍÏÓÔÉ ÏÔÓÔÅÐÅÎÉ ÓÏÐÒÑÖÅÎÉÑ ÐÒÏÃÅÓÓÏ× Ó×ÏÂÏÄÎÏÇÏ ÏËÉÓÌÅÎÉÑ Ó ÒÅÁËÃÉÑÍÉ ÎÅÐÏÓÒÅÄÓÔ×ÅÎÎÏÆÏÓÆÏÒÉÌÉÒÏ×ÁÎÉÑ (ÓÍ.
ÇÌ. XXIV).ôÁËÉÍ ÏÂÒÁÚÏÍ, ÞÁÓÔØ ÜÎÅÒÇÉÉ, ÚÁÐÁÓÅÎÎÏÊ × ÂÉÏÌÏÇÉÞÅÓËÉÈ ÓÔÒÕËÔÕÒÁÈ ÏÒÇÁÎÉÚÍÁ, ×ÅÄÅÔ Ë ÕÍÅÎØÛÅÎÉÀ ÐÒÏÄÕËÃÉÉ ÜÎÔÒÏÐÉÉ É ÏÐÒÅÄÅÌÑÅÔÓÑ ÓÔÅÐÅÎØÀÓÏÐÒÑÖÅÎÉÑ ÒÅÁËÃÉÉ. ëÒÏÍÅ ÔÏÇÏ, ×ÁÖÎÏÊ ÏÓÏÂÅÎÎÏÓÔØÀ ÂÉÏÌÏÇÉÞÅÓËÉÈ ÐÒÏÃÅÓÓÏ×Ñ×ÌÑÅÔÓÑ ÔÏ, ÞÔÏ ×ÅÝÅÓÔ×Á, ÕÞÁÓÔ×ÕÀÝÉÅ × ÒÅÁËÃÉÑÈ, ÓÁÍÉ ÐÒÅÔÅÒÐÅ×ÁÀÔ ÓÕÝÅÓÔ×ÅÎÎÙÅ ÓÔÒÕËÔÕÒÎÙÅ ÉÚÍÅÎÅÎÉÑ, ËÏÔÏÒÙÅ ÓÏÐÒÏ×ÏÖÄÁÀÔ ÎÅÐÒÅÒÙ×ÎÙÊ ÓÉÎÔÅÚ É ÒÁÓÐÁÄÄÉÎÁÍÉÞÅÓËÉÈ ÓÔÒÕËÔÕÒ ËÌÅÔËÉ. üÔÏ É ÍÏÖÅÔ ÐÒÉ×ÅÓÔÉ Ë ÔÏÍÕ, ÞÔÏ ÜÎÔÒÏÐÉÑ ÓÁÍÉÈÒÅÁÇÅÎÔÏ× ÂÕÄÅÔ ÚÁÍÅÔÎÏ ÉÚÍÅÎÑÔØÓÑ ÐÏ ÍÅÒÅ ÐÒÏÔÅËÁÎÉÑ ÒÅÁËÃÉÉ, Ô. Å.
× (V.2.19)(@S=@ x) 6= 0, ÞÔÏ ÎÅ ÕÞÉÔÙ×ÁÅÔÓÑ × (V.2.20).÷ ÜÔÏÍ ÓÌÕÞÁÅ ×ÅÌÉÞÉÎÁ ÓÒÏÄÓÔ×Á ÐÅÒÅÈÏÄÁ ÎÅ ÍÏÖÅÔ ÂÙÔØ Ó×ÑÚÁÎÁ ÔÏÌØËÏ ÓÓÏÐÕÔÓÔ×ÕÀÝÉÍÉ ÔÅÐÌÏ×ÙÍÉ ÜÆÆÅËÔÁÍÉ (V.2.19), Á ÚÁ×ÉÓÉÔ É ÏÔ ÜÎÔÒÏÐÉÉ ÒÅÁÇÅÎÔÏ×. ðÒÉÍÅÒÏÍ ÍÏÇÕÔ ÂÙÔØ ÒÁÚÌÉÞÎÙÅ ËÏÎÆÏÒÍÁÃÉÏÎÎÙÅ ÐÅÒÅÓÔÒÏÊËÉ × ÍÏÌÅËÕÌÁÈÆÅÒÍÅÎÔÏ×, ÕÞÁÓÔ×ÕÀÝÉÈ × ÍÅÔÁÂÏÌÉÞÅÓËÉÈ ÐÒÏÃÅÓÓÁÈ É ÉÚÍÅÎÑÀÝÉÈ × ÉÈ ÈÏÄÅ Ó×ÏÀÜÎÔÒÏÐÉÀ. óÌÅÄÏ×ÁÔÅÌØÎÏ, ÐÏÐÙÔËÉ ÏÐÒÅÄÅÌÉÔØ ÓËÏÒÏÓÔØ ÐÒÏÄÕÃÉÒÏ×ÁÎÉÑ ÜÎÔÒÏÐÉÉ× ÂÉÏÌÏÇÉÞÅÓËÉÈ ÓÉÓÔÅÍÁÈ ÎÁ ÏÓÎÏ×Å ÐÒÏÓÔÙÈ ËÁÌÏÒÉÍÅÔÒÉÞÅÓËÉÈ ÏÐÙÔÏ× ÎÅ ÍÏÇÕÔÄÁÔØ ÏÄÎÏÚÎÁÞÎÙÈ ÒÅÚÕÌØÔÁÔÏ× ÄÌÑ ÉÚÕÞÅÎÉÑ ÔÅÒÍÏÄÉÎÁÍÉÞÅÓËÉÈ Ó×ÏÊÓÔ× ÃÅÌÙÈÏÒÇÁÎÉÚÍÏ×.óÔÒÏÇÏ ÇÏ×ÏÒÑ, ÔÁËÉÅ ÉÚÍÅÒÅÎÉÑ ÐÒÉÍÅÎÉÍÙ ÌÉÛØ × ÓÌÕÞÁÅ ÐÒÏÓÔÙÈ ÈÉÍÉÞÅÓËÉÈ ÓÉÓÔÅÍ ÌÉÂÏ × ÏÔÎÏÛÅÎÉÉ ÈÏÒÏÛÏ ÉÚÕÞÅÎÎÙÈ ÏÔÄÅÌØÎÙÈ ÐÒÏÃÅÓÓÏ× ËÌÅÔÏÞÎÏÇÏÍÅÔÁÂÏÌÉÚÍÁ.T ;px3. óÏÏÔÎÏÛÅÎÉÅ ÍÅÖÄÕ ÚÎÁÞÅÎÉÑÍÉ Ä×ÉÖÕÝÉÈ ÓÉÌ É ÓËÏÒÏÓÔÅÊ ÐÒÏÃÅÓÓÏ×óÏÏÔÎÏÛÅÎÉÅ ÍÅÖÄÕ ÚÎÁÞÅÎÉÑÍÉ Ä×ÉÖÕÝÉÈ ÓÉÌ É ÓËÏÒÏÓÔÅÊ ÐÒÏÃÅÓÓÏ× ÉÇÒÁÅÔ ×ÁÖÎÕÀ ÒÏÌØ × ÔÅÒÍÏÄÉÎÁÍÉËÅ ÂÉÏÌÏÇÉÞÅÓËÉÈ ÓÉÓÔÅÍ.
îÅÏÂÈÏÄÉÍÏ, ÎÅ ÏÇÒÁÎÉÞÉ×ÁÑÓØÁÎÁÌÉÚÏÍ ÔÏÌØËÏ ÈÉÍÉÞÅÓËÉÈ ÐÒÏÃÅÓÓÏ× (V.2.11), ÒÁÓÓÍÏÔÒÅÔØ ÔÁËÖÅ ÐÅÒÅÎÏÓ ÞÅÒÅÚÍÅÍÂÒÁÎÙ ÔÅÐÌÏÔÙ, ×ÅÝÅÓÔ×Á É ÚÁÒÑÖÅÎÎÙÈ ÞÁÓÔÉÃ. ïÂÏÚÎÁÞÉÍ ÞÅÒÅÚ X ÚÎÁÞÅÎÉÅÄ×ÉÖÕÝÉÈ ÓÉÌ, Á ÞÅÒÅÚ J | ÚÎÁÞÅÎÉÅ ÐÏÔÏËÁ, ÉÌÉ ÓÕÍÍÁÒÎÏÊ ÓËÏÒÏÓÔÉ ÓÏÏÔ×ÅÔÓÔ×ÕÀÝÅÇÏ ÐÏÔÏËÁ.ïÞÅ×ÉÄÎÏ, ÞÔÏ ×Ï ×ÓÅÈ ÓÌÕÞÁÑÈ ×ÏÚÒÁÓÔÁÎÉÅ ÜÎÔÒÏÐÉÉ ÉÍÅÅÔ ×ÉÄd S=dt = (1=T )XJ > 0:(V.3.1)åÓÌÉ ÏÔËÒÙÔÁÑ ÓÉÓÔÅÍÁ ÎÁÈÏÄÉÔÓÑ ×ÂÌÉÚÉ ÔÅÒÍÏÄÉÎÁÍÉÞÅÓËÏÇÏ ÒÁ×ÎÏ×ÅÓÉÑ, ËÏÇÄÁ ÚÎÁÞÅÎÉÑ Ä×ÉÖÕÝÉÈ ÓÉÌ ×ÅÓØÍÁ ÍÁÌÙ (A=(RT ) 1), ÁÓÁÍÉ ÐÒÏÃÅÓÓÙ ÐÒÏÔÅËÁÀÔ ÄÏÓÔÁÔÏÞÎÏ ÍÅÄÌÅÎÎÏ (J ' 0), ÔÏ X É J Ó×ÑÚÁÎÙ ÓÌÅÄÕÀÝÉÍ ÓÏÏÔÎÏÛÅÎÉÅÍ:J = LX;(V.3.2)ÇÄÅ L | ÐÏÓÔÏÑÎÎÙÊ, ÉÌÉ ÌÉÎÅÊÎÙÊ, ËÏÜÆÆÉÃÉÅÎÔ.ióÏÏÔÎÏÛÅÎÉÑ ïÎÚÁÇÅÒÁ.130çÌÁ×Á V. ôÅÒÍÏÄÉÎÁÍÉËÁ ÓÉÓÔÅÍ ×ÂÌÉÚÉ ÒÁ×ÎÏ×ÅÓÉÑ (ÌÉÎÅÊÎÁÑ ÔÅÒÍÏÄÉÎÁÍÉËÁ)óÐÒÁ×ÅÄÌÉ×ÏÓÔØ ÌÉÎÅÊÎÙÈ ÓÏÏÔÎÏÛÅÎÉÊ (V.3.2) ÐÏÄÔ×ÅÒÖÄÁÅÔÓÑ, ÎÁÐÒÉÍÅÒ,ÚÁËÏÎÏÍ ïÍÁ, ÇÄÅ ÚÎÁÞÅÎÉÅ ÐÏÔÏËÁ ÜÌÅËÔÒÉÞÅÓÔ×Á I ÐÒÏÐÏÒÃÉÏÎÁÌØÎÏ Ä×ÉÖÕÝÅÊÓÉÌÅ | ÒÁÚÎÏÓÔÉ ÐÏÔÅÎÃÉÁÌÏ× U , a L = 1=R | ÌÉÎÅÊÎÙÊ ËÏÜÆÆÉÃÉÅÎÔ ÐÒÏÐÏÒÃÉÏÎÁÌØÎÏÓÔÉ 1 = U=R.áÎÁÌÏÇÉÞÎÏÅ ÓÏÏÔÎÏÛÅÎÉÅ ÉÍÅÅÔ ÍÅÓÔÏ × ÓÌÕÞÁÅ ÐÒÏÓÔÏÊ ÄÉÆÆÕÚÉÉ ×ÅÝÅÓÔ×ÁÉÌÉ ÐÅÒÅÎÏÓÁ ÔÅÐÌÏÔÙ ÞÅÒÅÚ ÍÅÍÂÒÁÎÕ ÍÅÖÄÕ ÓËÏÒÏÓÔØÀ ÐÒÏÃÅÓÓÁ É ÇÒÁÄÉÅÎÔÏÍÓÏÏÔ×ÅÔÓÔ×ÕÀÝÅÇÏ ÐÁÒÁÍÅÔÒÁ ÐÏ ÏÂÅ ÓÔÏÒÏÎÙ ÍÅÍÂÒÁÎÙ:dc=dt grad c (ÚÁËÏÎ æÉËÁ);dQ=dt grad T (ÚÁËÏÎ æÕÒØÅ);ÇÄÅ c | ËÏÎÃÅÎÔÒÁÃÉÑ; Q | ËÏÌÉÞÅÓÔ×Ï ÔÅÐÌÏÔÙ; T | ÔÅÍÐÅÒÁÔÕÒÁ.äÌÑ ÈÉÍÉÞÅÓËÉÈ ÐÒÏÃÅÓÓÏ× ×ÂÌÉÚÉ ÒÁ×ÎÏ×ÅÓÉÑ, ËÏÇÄÁ ÓËÏÒÏÓÔÉ ÐÒÑÍÏÊ É ÏÂÒÁÔÎÏÊ ÒÅÁËÃÉÊ ÐÏÞÔÉ ÒÁ×ÎÙ ÍÅÖÄÕ ÓÏÂÏÊ, ÔÁËÖÅ ÓÐÒÁ×ÅÄÌÉ×Ï ×ÙÒÁÖÅÎÉÅv = LA;(V.3.3)ÇÄÅ v | ÓÕÍÍÁÒÎÁÑ ÓËÏÒÏÓÔØ ÐÒÏÃÅÓÓÁ, ÒÁ×ÎÁÑ ÒÁÚÎÏÓÔÉ ÓËÏÒÏÓÔÅÊ ÐÒÑÍÏÊ É ÏÂÒÁÔÎÏÊ ÒÅÁËÃÉÊ.ïÓÏÂÙÊ ÉÎÔÅÒÅÓ ÐÒÅÄÓÔÁ×ÌÑÅÔ ÓÌÕÞÁÊ, ËÏÇÄÁ × ÓÉÓÔÅÍÅ ÏÄÎÏ×ÒÅÍÅÎÎÏ ÐÒÏÔÅËÁÅÔÎÅÓËÏÌØËÏ ÐÒÏÃÅÓÓÏ×, ËÁÖÄÙÊ ÉÚ ËÏÔÏÒÙÈ ÈÁÒÁËÔÅÒÉÚÕÅÔÓÑ ÓÏÂÓÔ×ÅÎÎÙÍÉ ÚÎÁÞÅÎÉÑÍÉ ÓËÏÒÏÓÔÉ É Ä×ÉÖÕÝÅÊ ÓÉÌÙ.
üÔÉ ÐÒÏÃÅÓÓÙ ÍÏÇÕÔ ×ÚÁÉÍÏÄÅÊÓÔ×Ï×ÁÔØ ÄÒÕÇÓ ÄÒÕÇÏÍ ÔÁË, ÞÔÏ ÓËÏÒÏÓÔØ ËÁÖÄÏÇÏ ÉÚ ÎÉÈ ÂÕÄÅÔ ÚÁ×ÉÓÅÔØ É ÏÔ Ä×ÉÖÕÝÉÈ ÓÉÌ ×ÓÅÈÄÒÕÇÉÈ ÐÒÏÃÅÓÓÏ×, Ô. Å. ËÁÖÄÙÊ ÐÏÔÏË ÚÁ×ÉÓÉÔ ÎÅ ÔÏÌØËÏ ÏÔ Ó×ÏÅÊ ÓÉÌÙ, ÎÏ É ÏÔ×ÓÅÈ ÄÒÕÇÉÈ ÓÉÌ.äÌÑ Ä×ÕÈ ×ÚÁÉÍÏÄÅÊÓÔ×ÕÀÝÉÈ ÐÒÏÃÅÓÓÏ× (J1 ; X1 ) É (J2 ; X2 ) ÜÔÏ ÄÏÐÕÝÅÎÉÅ ÍÏÖÎÏ ÚÁÐÉÓÁÔØ ÓÌÅÄÕÀÝÉÍ ÏÂÒÁÚÏÍ:J1 = L11 X1 + L12 X2 ;(V.3.4)J2 = L21 X1 + L22 X2 ;ÇÄÅ ËÏÜÆÆÉÃÉÅÎÔÙ L12 , L21 ÓÏÏÔ×ÅÔÓÔ×ÕÀÔ ×ÏÚÍÏÖÎÏÊ ×ÚÁÉÍÏÓ×ÑÚÉ Ä×ÕÈ ÐÏÔÏËÏ× ÉÎÁÚÙ×ÁÀÔÓÑ ËÏÜÆÆÉÃÉÅÎÔÁÍÉ ×ÚÁÉÍÎÏÓÔÉ ïÎÚÁÇÅÒÁ.óÏÏÔÎÏÛÅÎÉÑ ÔÉÐÁ (V.3.4) ÐÒÉÍÅÎÉÍÙ, ÎÁÐÒÉÍÅÒ, × ÓÌÕÞÁÅ ÏÄÎÏ×ÒÅÍÅÎÎÏÊ ÄÉÆÆÕÚÉÉ ×ÅÝÅÓÔ×Á É ÐÅÒÅÎÏÓÁ ÔÅÐÌÏÔÙ ÉÌÉ ÐÅÒÅÎÏÓÁ ÜÌÅËÔÒÉÞÅÓËÏÇÏ ÔÏËÁ É ÄÉÆÆÕÚÉÉÉÏÎÏ×.ëÏÜÆÆÉÃÉÅÎÔÙ ×ÚÁÉÍÎÏÓÔÉ L12 É L21 ÍÏÇÕÔ ÉÍÅÔØ ÌÀÂÏÊ ÚÎÁË, ÏÄÎÁËÏ ÍÅÖÄÕÎÉÍÉ ÓÕÝÅÓÔ×ÕÅÔ ×ÁÖÎÏÅ ÓÏÏÔÎÏÛÅÎÉÅ:L12 = L21 :(V.3.5) üÔÏ ÔÁË ÎÁÚÙ×ÁÅÍÏÅ ÓÏÏÔÎÏÛÅÎÉÅ ×ÚÁÉÍÎÏÓÔÉ ïÎÚÁÇÅÒÁ ÐÏËÁÚÙ×ÁÅÔ, ÞÔÏ ÅÓÌÉÐÏÔÏË 1-ÇÏ ÎÅÏÂÒÁÔÉÍÏÇÏ ÐÒÏÃÅÓÓÁ ÉÓÐÙÔÙ×ÁÅÔ ×ÌÉÑÎÉÅ ÓÒÏÄÓÔ×Á X2 ÎÅÏÂÒÁÔÉÍÏÇÏ 2-ÇÏ ÐÒÏÃÅÓÓÁ ÞÅÒÅÚ ÐÏÓÒÅÄÓÔ×Ï ËÏÜÆÆÉÃÉÅÎÔÁ L12 , ÔÏ É ÐÏÔÏË 2-ÇÏ ÐÒÏÃÅÓÓÁÔÁËÖÅ ÉÓÐÙÔÙ×ÁÅÔ ×ÌÉÑÎÉÅ ÓÒÏÄÓÔ×Á X1 ÞÅÒÅÚ ÐÏÓÒÅÄÓÔ×Ï ÔÏÇÏ ÖÅ ÓÁÍÏÇÏ ËÏÜÆÆÉÃÉÅÎÔÁ L21 = L12 .x 3.
óÏÏÔÎÏÛÅÎÉÅ ÍÅÖÄÕ ÚÎÁÞÅÎÉÑÍÉ Ä×ÉÖÕÝÉÈ ÓÉÌ É ÓËÏÒÏÓÔÅÊ ÐÒÏÃÅÓÓÏ×131÷ÙÒÁÖÅÎÉÅ ÄÌÑ ÓËÏÒÏÓÔÉ ÐÒÏÄÕÃÉÒÏ×ÁÎÉÑ ÜÎÔÒÏÐÉÉ (V.2.14) × ÓÌÕÞÁÅ Ä×ÕÈ ÐÒÏÃÅÓÓÏ× ÐÒÉÍÅÔ ÔÅÐÅÒØ ×ÉÄb= T ddtS = J1 X1 + J2 X2 = (L11 X1 + L12 X2 )X1 + (L21 X1 + L22 X2 )X2 == L11 X12 + (L12 + L21 )X1 X2 + L22 X22 = L11 X12 + 2L12 X1 X2 + L22 X22 > 0 (V.3.6)÷ ÏÂÝÅÍ ÓÌÕÞÁÅ, ËÏÇÄÁ × ÓÉÓÔÅÍÅ ÏÄÎÏ×ÒÅÍÅÎÎÏ ÐÒÏÔÅËÁÅÔ k ÐÒÏÃÅÓÓÏ×,ib= T ddtS =iXJ X > 0;k(V.3.7)kkÇÄÅ J = P L X ÐÒÉ L = L , ÏÔËÕÄÁ ÓÌÅÄÕÅÔkjkjjkjjkb= T ddtS =iXX(V.3.8)L XX:kjkjkj÷ ×ÙÒÁÖÅÎÉÉ (V.3.8) ÓÉÌÙ ÐÏÄÂÉÒÁÀÔÓÑ ÔÁËÉÍ ÏÂÒÁÚÏÍ, ÞÔÏÂÙ ÒÁÚÍÅÒÎÏÓÔÉ ÐÒÁ×ÙÈÉ ÌÅ×ÙÈ ÞÁÓÔÅÊ ÓÏ×ÐÁÄÁÌÉ [äÖ Ó;1 ].óÏÏÔÎÏÛÅÎÉÑ ïÎÚÁÇÅÒÁ (V.3.4), (V.3.5) ÉÇÒÁÀÔ ×ÁÖÎÕÀ ÒÏÌØ × ÔÅÒÍÏÄÉÎÁÍÉËÅÎÅÏÂÒÁÔÉÍÙÈ ÐÒÏÃÅÓÓÏ× É, ËÒÏÍÅ ÔÏÇÏ, ÎÁÈÏÄÑÔ ÎÅÐÏÓÒÅÄÓÔ×ÅÎÎÏÅ ÉÓÐÏÌØÚÏ×ÁÎÉÅ ×ÁÎÁÌÉÚÅ Ó×ÏÊÓÔ× ÂÉÏÌÏÇÉÞÅÓËÉÈ ÓÉÓÔÅÍ. ôÁË, ÉÓÐÏÌØÚÕÑ ÜÔÉ ÓÏÏÔÎÏÛÅÎÉÑ, ÍÏÖÎÏ,ÏÐÒÅÄÅÌÑÑ ÚÎÁÞÅÎÉÑ ËÏÜÆÆÉÃÉÅÎÔÏ× L , ÕÓÔÁÎÏ×ÉÔØ ËÏÌÉÞÅÓÔ×ÅÎÎÕÀ Ó×ÑÚØ ÍÅÖÄÕÏÄÎÏ×ÒÅÍÅÎÎÏ ÐÒÏÔÅËÁÀÝÉÍÉ × ËÌÅÔËÅ ÐÒÏÃÅÓÓÁÍÉ.îÁÐÒÉÍÅÒ, ÐÕÓÔØ ÞÅÒÅÚ ÍÅÍÂÒÁÎÕ ÐÒÏÈÏÄÑÔ ÐÏÔÏË ×ÏÄÙ J1 É ÐÏÔÏË J2 ËÁËÏÇÏÌÉÂÏ ÒÁÓÔ×ÏÒÅÎÎÏÇÏ × ÎÅÊ ×ÅÝÅÓÔ×Á.
ä×ÉÖÕÝÅÊ ÓÉÌÏÊ ÐÏÔÏËÁ ×ÏÄÙ J1 ÂÕÄÅÔ, ÏÞÅ×ÉÄÎÏ, ÒÁÚÎÏÓÔØ ÄÁ×ÌÅÎÉÑ X1 = p ÍÅÖÄÕ ÆÁÚÁÍÉ, Á ÐÏÔÏË ÒÁÓÔ×ÏÒÅÎÎÏÇÏ ×ÅÝÅÓÔ×ÁÏÔÎÏÓÉÔÅÌØÎÏ ÒÁÓÔ×ÏÒÉÔÅÌÑ J2 ÂÕÄÅÔ ÐÒÉ×ÏÄÉÔØÓÑ × ÄÅÊÓÔ×ÉÅ × ÒÅÚÕÌØÔÁÔÅ ÒÁÚÎÏÓÔÉÏÓÍÏÔÉÞÅÓËÉÈ ÄÁ×ÌÅÎÉÊ X2 = p ÐÏ ÏÂÅ ÓÔÏÒÏÎÙ ÍÅÍÂÒÁÎÙ.÷ ÓÏÏÔ×ÅÔÓÔ×ÉÉ Ó (V.3.4), (V.3.5) ÂÕÄÅÍ ÓÞÉÔÁÔØ, ÞÔÏ ËÁÖÄÙÊ ÉÚ ÐÏÔÏËÏ× ×ÏÄÙÉ ÒÁÓÔ×ÏÒÅÎÎÏÇÏ ×ÅÝÅÓÔ×Á ÓÏÐÒÑÖÅÎ Ó ÓÉÌÁÍÉ p É p . ôÏÇÄÁJ1 = L11 X1 + l12 X2 = L11 p + L12 p ;(V.3.9)J2 = L21 X1 + l22 X2 = L21 p + L22 p :æÏÒÍÕÌÁ (V.3.9) ÏÚÎÁÞÁÅÔ, ÞÔÏ ÐÏÔÏË ×ÏÄÙ J1 ÎÅ ÍÏÖÅÔ ÒÁÓÓÍÁÔÒÉ×ÁÔØÓÑ ÔÏÌØËÏ× ËÁÞÅÓÔ×Å ÏÄÎÏÚÎÁÞÎÏÊ ÆÕÎËÃÉÉ ÒÁÚÎÏÓÔÉ ÇÉÄÒÏÓÔÁÔÉÞÅÓËÏÇÏ ÄÁ×ÌÅÎÉÑ (X1 = p),Á ÚÁ×ÉÓÉÔ É ÏÔ ÐÏÔÏËÁ ÄÒÕÇÏÇÏ ×ÅÝÅÓÔ×Á. ðÒÉÍÅÎÅÎÉÅ ÕÒÁ×ÎÅÎÉÊ (V.3.9) ÐÏÚ×ÏÌÉÌÏÐÏÎÑÔØ ×ÚÁÉÍÏÓ×ÑÚØ ÜÔÉÈ ÐÒÏÃÅÓÓÏ× É, × ÞÁÓÔÎÏÓÔÉ, ××ÅÓÔÉ ËÏÜÆÆÉÃÉÅÎÔ ÉÚÂÉÒÁÔÅÌØÎÏÓÔÉ ÍÅÍÂÒÁÎÙc = ;L21 =L11 ;(V.3.10)ËÏÔÏÒÙÊ ÐÏËÁÚÙ×ÁÅÔ ÓÔÅÐÅÎØ ÐÒÏÎÉÃÁÅÍÏÓÔÉ ÍÅÍÂÒÁÎÙ ÄÌÑ ÏÐÒÅÄÅÌÑÅÍÏÇÏ ×ÅÝÅÓÔ×Á.÷ÅÌÉÞÉÎÁ c × (V.3.10) ÕËÁÚÙ×ÁÅÔ ÏÄÎÏ×ÒÅÍÅÎÎÏ É ÎÁ ÍÅÈÁÎÉÚÍ ÐÅÒÅÎÏÓÁ ÒÁÓÔ×ÏÒÅÎÎÏÇÏ ×ÅÝÅÓÔ×Á.
÷ ÓÁÍÏÍ ÄÅÌÅ, ÅÓÌÉ c ! 0, ÔÏ L21 ! 0 ÐÒÉ L11 6= 0. óÌÅÄÏ×ÁÔÅÌØÎÏ,jkssss132çÌÁ×Á V. ôÅÒÍÏÄÉÎÁÍÉËÁ ÓÉÓÔÅÍ ×ÂÌÉÚÉ ÒÁ×ÎÏ×ÅÓÉÑ (ÌÉÎÅÊÎÁÑ ÔÅÒÍÏÄÉÎÁÍÉËÁ)ÐÅÒÅÎÏÓ ×ÅÝÅÓÔ×Á ÞÅÒÅÚ ÇÒÕÂÕÀ ÍÅÍÂÒÁÎÕ ÓÏ×ÅÒÛÁÅÔÓÑ ÎÅÚÁ×ÉÓÉÍÏ ÏÔ Ä×ÉÖÅÎÉÑ×ÏÄÙ. ðÒÉ c = 1, L11 = ;L21 , ÞÔÏ Ó×ÉÄÅÔÅÌØÓÔ×ÕÅÔ Ï ×ÚÁÉÍÏÓ×ÑÚÉ ÐÏÔÏËÏ× ×ÅÝÅÓÔ×Á É ×ÏÄÙ × ÓÌÕÞÁÅ ÐÏÌÕÐÒÏÎÉÃÁÅÍÏÊ ÍÅÍÂÒÁÎÙ. úÎÁÞÅÎÉÅ ËÏÜÆÆÉÃÉÅÎÔÁ c ÍÏÖÎÏÎÁÊÔÉ ÜËÓÐÅÒÉÍÅÎÔÁÌØÎÏ ÐÕÔÅÍ ÏÐÒÅÄÅÌÅÎÉÑ ×ÅÌÉÞÉÎÙ ÐÏÔÏËÁ ×ÏÄÙ × ÏÔÓÕÔÓÔ×ÉÅÇÉÄÒÏÓÔÁÔÉÞÅÓËÏÇÏ ÄÁ×ÌÅÎÉÑ (p = 0) ÐÏÄ ÄÅÊÓÔ×ÉÅÍ ÌÉÛØ ÒÁÚÎÏÓÔÉ ÏÓÍÏÔÉÞÅÓËÏÇÏÄÁ×ÌÅÎÉÑ (p 6= 0). ðÏÄÏÂÎÙÍ ÏÂÒÁÚÏÍ ÍÏÖÎÏ ÒÁÓÓÍÏÔÒÅÔØ É ÂÏÌÅÅ ÓÌÏÖÎÙÅ ÐÒÏÃÅÓÓÙ ÔÒÁÎÓÐÏÒÔÁ ×ÅÝÅÓÔ×Á É ÜÌÅËÔÒÉÞÅÓËÉÈ ÚÁÒÑÖÅÎÎÙÈ ÞÁÓÔÉà ÞÅÒÅÚ ÍÅÍÂÒÁÎÙ.óËÏÒÏÓÔØ ÐÒÏÄÕÃÉÒÏ×ÁÎÉÑ ÜÎÔÒÏÐÉÉ ÄÌÑ ÐÏÔÏËÁ ×ÏÄÙ JH2 , ÏÄÉÎÏÞÎÏÇÏ ÜÌÅËÔÒÏÌÉÔÁ J É ÜÌÅËÔÒÉÞÅÓËÏÇÏ ÔÏËÁ I ÉÍÅÅÔ ×ÉÄb = JH2 mH2 + J m + I f;(V.3.11)ÇÄÅ mH2 , m , f | ÒÁÚÎÏÓÔÉ ÐÏÔÅÎÃÉÁÌÏ× ÄÌÑ ×ÏÄÙ, ÜÌÅËÔÒÏÌÉÔÁ É ÜÌÅËÔÒÉÞÅÓËÉÈ ÚÁÒÑÄÏ×.óÏÏÔ×ÅÔÓÔ×ÕÀÝÉÅ ÆÅÎÏÍÅÎÏÌÏÇÉÞÅÓËÉÅ ÕÒÁ×ÎÅÎÉÑ ÔÉÐÁ (V.3.9) ÓÏÄÅÒÖÁÔ ÕÖÅÛÅÓÔØ ÎÅÚÁ×ÉÓÉÍÙÈ ËÏÜÆÆÉÃÉÅÎÔÏ× ïÎÚÁÇÅÒÁ, ËÏÔÏÒÙÅ ÍÏÖÎÏ ÏÐÒÅÄÅÌÉÔØ, ÍÅÎÑÑÜËÓÐÅÒÉÍÅÎÔÁÌØÎÙÅ ÕÓÌÏ×ÉÑ ÔÒÁÎÓÐÏÒÔÎÙÈ ÐÒÏÃÅÓÓÏ×.÷ ÜÔÏÍ ÐÒÉÍÅÒÅ ÐÅÒÅÎÏÓ ÚÁÒÑÖÅÎÎÙÈ ÞÁÓÔÉà ÏÓÕÝÅÓÔ×ÌÑÅÔÓÑ ÐÁÓÓÉ×ÎÏ ÐÏÄ ÄÅÊÓÔ×ÉÅÍ ÒÁÚÎÏÓÔÉ ÜÌÅËÔÒÉÞÅÓËÉÈ ÐÏÔÅÎÃÉÁÌÏ× É ËÏÎÃÅÎÔÒÁÃÉÊ ×ÅÝÅÓÔ×Á ÐÏ ÏÂÅ ÓÔÏÒÏÎÙ ÍÅÍÂÒÁÎÙ.