Антидемидович 5 - ДУ (1113366), страница 20
Текст из файла (страница 20)
Функ~я / непрерывна в любом прямоугольнике )2= ((х, у) Е)(з: !х — Ц ~ (а, )у — Ц(61~ и имеет ограниченную проижюдную по у н Н: — =4у, ) — ~ = )4у! (4(Ь+ Ц. О/ 1О/ ау ' !Ву $8. Сущестаеание и едивстаевиасгь решеявя 87 ПозтомУ на сегменте (х — Ц < а' = ш!п(а, Ху), где М = агах !2Р' — х( < 2(1 + Ь) + 1+ а, м,т)ел существует единственное решение. Как и в случае а), параметры а и Ь находим из условий: Ь О~ Ь а= и = О. (2) 2(! + Ь)з + а + 1 ОЬ ~ г(! + Ь)' + + й Следовательно, а = 8(Т+Ьу, 2Ь вЂ” 3 = 8() — -Ы. Из последнего равенсша следует, по Ь > )7 2 > 1 2 ! ГЗ > 1,2.
А тогда а < 4(Т+ гг) = 0,11. Однако оценку для 4 можно улучшить, считая, по а < 1. Тогда М = 2(1+ Ц' — 1+ а и из равенств, аналогичных (2), находим 1 Г5 а = 2Ь вЂ” 1= < — или Ь < г(-. 4(1+Ь)' 4(1+Ы 4 1' 8 Следовательно, а = 4П+Ь) > ге 0,13. Итак, по меньшей мере, на сегменте 0,87 (~ 1 1 4 1+ уь в < х < 1,13 решение задачи существует и единственное.
Пользуясь леммой Бихари, можно указать еще больший сегмент сущеспювания и единственности решения. Действительно, представляя данную задачу в виде у(а) = — (3 — х ) + 2 ~ у (1) г)1 (а > 1), 2 ! получаем оценку ее решения: (у(х)! <С+2/1р(1)!'а(, С= — юах )3 — х ), ! из которой, согласно лемме, следует неравенство )у(я)( ч б (б(С) + 2(а — 1)), (3) где Ггй 1 1 а(н)=/ —,= — -- (в>в,>О), П ио в Таким образом, нз (3) получаем оценку С '(!) = 1 — не( С 1 — 2С(я — 1) ' С (з !Р(1)(~<, где С= шах 11+1 —— 1 — 2С( ' о<щт1 2 Получаем уравнение т шах (2+ г( — 1'~, нз котоРого слелует, что 0,33 < 2' < 0,4!. Йтяк, можно гарантировать сущеспювание и единственность Решения запвчи б) на сегменте О,б7 (~ х <~ 1,5.
из которой следует, что решение задачи б) существует на сегменте 1 < я < гС + 1. Величину Х ! находим из уравнения 2С + 1 = Х, или ! 1 шах !3 — х ). 2 (4) Х вЂ” 1 !<*<х Из (4) получаем Х = 1,5, т. е. существование единственного решения гарантируется на сегменте 1 < я < 1,5. Для выяснения вопроса о продолжнмости решения левее точки х = 1 в задаче б) произведем замену х = 1 — 1 (1 > 0) и снова воспользуемся леммой Бихари. После аналогичных выкладок приходим к оценке Гл.
1. Дифференциальные уравиеива первого порядка 88 в) Применим сначала теорему Пикара, все условия котоРой выполнены в прямоугольнике 22, а затем найдем а' = пйп (а,,) . Из уравнений а= 1=0 а+!+е ' ОЬ (а+1+е / получаем а = е ', а = е '+'+". Отсюда находим, что а > 0,2. Таким образом, на сегменте 0,8 < ! < 1,2 решение существует и единственно. Воспользуемся теперь леммой Бихари. Из интегрального уравнения данной задачи х(1) = — (1 — 1)+ /е о'аз, 1> 1, 2 1 следует опенка !х(1)~ ~( С+ / е!Ио!йо, С = — шах /1' — 1! = — (Т' — 1). 2 ~<о<их 2 ! Поскольку г г(з гт(и)= — =е "' — е ", и>ио>0, е' "о то )п (е- о у) С(С) = е "' — е (С > ио). Согласно лемме, имеем оценку (х(1)! < — 1и (е "' — е и + е с — 1+ 1) = — 1и (е с — 1+ 1), откуда 1 < 1 ( е + 1. Следовательно, максимально возможный сегмент существования решения -с справа от точки ! = 1 найдем, решив уравнение Т вЂ” 1 = -21п(Т вЂ” 1) (1 < Т < 2).
Из него следует, что Т > 1,5. Для выяснения вопроса о продолжимости решения левее точки 1 = 1 произведем замену 1 = 1 — т (О .- т ( то) и проделаем все выкладки согласно лемме Бихари. Тогда получим гз !х(т)! ( — )п(е с — т), где С = шах г2- — т о<о<,1 Максимально возможное значение то находим из уравнения то — — е с нли С = — 1пто (О < то <!). гз го Так как С = т, — Т, то 2- — то — — !ото. Отсюда получаем то > 0,6. В результате делаем вывод о существовании и единственности решения на сегменте 0,4 < ~ (х ( 1,5. г) Применяем теорему Пикара для системы дифференциальных уравнений.
Здесь 1о = О, хо = 1, уо = 2. Функции У,(1, х, у) = у', Уг(1, х, у) = х' непрерывны в области ог(о,*,д) о':яо,,хф -зр+ср::Роь) и имеют в ней ограниченные частные производные .ь"г = О, -р г = 2у, ф- = 2х, ф = О. Следовательно, на сегменте — Ь (1 ( Ь, где Ь = пйп (а, ф), Ьз = шах 1/Я+ зоо, сУществует ю,ивова * единственное решение рассматриваемой задачи. $8. Существование и едвистаеииосп решения 89 откуда 1 '(1)! + Ы()! < 3+ / (!х(о)!'+ Ь(о)! )о(о < 3+ / (1х(ой+ Ъ(о)!) до, о а нлн и < 3+ / из(о)до, где и = !х(+ !у~. о Согласно лемме Бихари имеем Рдо 1 1, ео б=з( —,= — — —, 6 (1)= еа 1 — ео( о и (~ 6 (0(3) + 1) = 1 — 31' откуда 0 < 1 < 3.
Аналогично получаем левый от точки ! = 0 интервал продолжимости — 3 < ! ! <1<0, и 202. Для уравнения у' = х — у' с начальным условием д(0) = 0 построить третье приближение к решению и оценить его погрешность при 0 < х < 0,5. м Согласно формуле (3), п. 8.1, имеем ( 14 з 2 уа — — 0; уо(х) = ~(1 — у )дг= —; у,(х) = / (( — — ~ о(!=в а а У(2 15 'ьа ха ха хо хп у~ Г 11 х х х х ~, 2 20) ) 2 20 160 4400 о Оценим погрешность полученного приближения. Легко установить, что решение данной задачи существует и единственно на сегменте — -т- (~ 1 о'4 < х < -,—, так что последовательные приближения 1 т'4 у м(х) = уо+~1(1, у (1))Ж оо равномерно сходятся на этом сегменте к решению интегрального уравнения р(, ) = до + / У(1, р(1)) й.
(2) ум 'я оо втт) ~(2+о) о 2(2 ы, ю Шо,оаоя М зГ2(2+Ь)з' дЬ (,(2+Ь)з) находим, что Ь = 2 и а > Ьу(2) = ~г — — > 0,1. Следовательно, на сепченте -О,! < 1 < 0„1 2 2 - 'ЬУ(2) — —,~З4 —,44 существует единственное решение. Если применим лемму Бихари, то сможем указать сегмент существования и единственности ! 1 — 3 <1< 3.
Действишльно, из интегральных уравнений рассматриваемой задачи следует, по (х(1)! < 1+ / (у(о)!'до, (у(1)! < 2+ /)х(о)! Ио, а о Гл. 1. 2(иФфереиннальиые уравиещщ первого порядка Вычитал почленно из (1) равенство (2) при х > хо и оценивая соответствующие разности лля и Е Ео, получим « « !У(х)-уо! ( /И(С, у(С))!а =/!р(С))41, Р(С) =И(С, у(С))!, «о «0 « ««з « !У(х) — уз(х)! ~( э/(1С(С, у(С)) — С (С, уо)1!йС (~ Ь / с(х! / ЧЗ(С) 5(С = Ъ /(х — и)уо(и) 5(в, (3) «О «0 Ь« !У(х) — у«(х)! ~ (/ )~(С, у(С)) — у(15 у„з(С))(о(С (~ — /(х — и)"Уз(п)5(п, «0 «0 где Ь вЂ” постоянная Липпзица Функции у по переменной у в прямоугольнике СС = ((х, у) Е Ж~: !х — хо! < о, !у — уо! ( Сзо) В рассматриваемом случае Ь ~ (шах !2У(х)! = 2ЦуЦ !С(в) = !и — у (и)! < !п!+ ЦУЦ, и = 3 !«,гзоя хо — — О, поэтому из (3) получаем оценку 0,5 ЦУ вЂ” УзЦ ( — ЦУЦ' /(х — п) (и+ЦУЦ )5(и < — ЦУЦ /(0,5 — и) (и+ЦУЦ~)5(и = (О,1+ЦУЦ ).
(4) Остается оценить ЦУЦ на сегменте 0 < х < 0,5, который содержится в сегменте (--г —, -5 — ~. 1 1 С Из леммы Бихари следует, что !д! < Т5 ~х (см. пример 201), где С = шах $- = 0,125. ОД«<0,5 Поэтому ЦУЦ ( -1 — -ф20-05 < 0„134. Принимая во внимание оценку (4), окончательно имеем 0 125 Цд — узЦ < О,б.
ГО '. М 203. Пользуясь каким-либо достаточным условием единственности, выделить области на плоскости хОУ, в которых через каждую точку проходит единственное решение уравнения: а) у' = 2ху+ у; б) у = 2+ ~/«у — 2х; в) (х — 2)у = згу — х; г) у' = 1+ !Лу. М а) Функция у(х, у) = 2ху+ у' непрерывна в любой части плоскости хОУ, а ее производная В = 2(х 4 у) ограничена в любой конечной части Р этой плоскости. Следовательно, дг У по теореме Пикара через каждую точку (хо, уо) Е Р проходит единственная интегральная кривая уравнения а). б) Функция С (х, У) = 2+ (гу- 2х непрерывна у (х, у) Е Жз, однако ее частная производная ч- = 3(у — 2х) з ограничена только при у и' 2х. Тогда, по теореме Пикара, через каждую точку ОГ 1 Уд (хо, уо) Е Ж, где уо Ф 2хо, проходит единственная интегральная кривая.
в) Воспользуемся теоремой п.8.2. Функция Г(х, у, у') = (х — 2)у' — /у+ х удовлетворяет условиям: 1) она непрерывна при у > 0; 2) частная производная — „-г = х — 2 ~ 0 при х Ф 2; др ду' 3) ЧаСтяая ПрОИЗВОдиая  — — — -ч„-,- ОтраинЧЕНа Прн у > Е > 0; 4) уо « -' 5 Х вЂ” ЕдИНСтВЕННЫй Ог" 1 2су х — 7 действительный корень уравнения х.(х, у, у') = О. Следовательно, через кюкдую точку (хо, уо) плоскости хОУ, где хо ~ 22 .55( (уо > о > О, проходит единственная интегральная кривая уравнения в).
г) ясно, по при у и' ~т + Бог, й Е Е, правая часть уравнения непрерывна и имеет ограниченную частную производную по у. Следовательно, по теореме Пикара, через кажлзчо точку плоскости хОУ, эа исключением прямых у = от+ух, проходит единственная интегральная кривая рассматриваемого уравнения. И $8. Сув!еетповввие и сдиихшевиасеь ршиешш 91 Пввиечевве. Если функпня т в задаче Коши имеет в прямоугольнике и ограниченную частную производную ч»е, то она автоматически удовлепюрвет условию Лившица.
дг 204. При каких неотрицательных а нарушается единственность решений уравнения у' = (у)" и в каких точках? м При неотрицательных а функция у(х, у) = !у~' непрерывна, поэтому уравнение имеет решения. Если у ~ О, то частная производная н- = а1У~' збпу существует и ограничена в у каждой конечной части плоскости хОУ. Следовательно, по теореме Пикара, если у ~ О, то при любом а существует единственная интегральная кривая, проходяшдя через заданную точку. Если у = О, но а > 1, то функция у удовлетворяет условию Липшица: !У»(' = !у,!' ')У,) < Ь|у,~ (здесь у! — — 0).
Поэтому, согласно теореме Пикара, единственносп решения и в этом случае гарантирована. Остается проверить случай, когда 0 < а < 1 н у = О. Возьмем произвольную точку !!у(хе, 0) на оси Ох. Очевидно, что через эту точку прохолит 1 — » интегральная кривая у = О. Однако через эту точку проходит также кривая ?' — »бп у = * — хе, являющаяся решением рассматриваемого уравнения. Таким образом, при 0 < а < ! в точках (х, 0) б Е' наруцшется единственность решений данного уравнения. в 205. С помощью необходимого и достаточного условия единстиенности для уравнений вида у' = у(у) исследовать дифференциальные уравнения: а) у =(у — 1)(г!у'; б) у =агссозу; (О, д=О м Согласно указанному критерию, если непрерывная функция у ~ О, то решение уравнения существует и единственно.